login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000179 Ménage numbers: number of permutations s of [0, ..., n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.
(Formerly M2062 N0815)
38
1, 0, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

According to rook theory, J. Riordan considered a(1) to be -1; see A102761. - Vladimir Shevelev, Apr 02 2010

Or, for n>=3, the number of 3 X n Latin rectangles the second row of which is full cycle with a fixed order of its elements, e.g., the cycle (x_2,x_3,...,x_n,x_1) with x_1 < x_2 < ... < x_n. - Vladimir Shevelev, Mar 22 2010

Muir (p. 112) gives essentially this recurrence (although without specifying any initial conditions). Compare A186638. - N. J. A. Sloane, Feb 24 2011

Sequence discovered by Touchard in 1934. - L. Edson Jeffery, Nov 13 2013

Although these are also known as Touchard numbers, the problem was formulated by Lucas in 1891, who gave the recurrence formula shown below. See Cerasoli et al., 1988. - Stanislav Sykora, Mar 14 2014

From Vladimir Shevelev, Jun 25 2015: (Start)

According to the ménage problem, 2*n!*a(n) is the number of ways of seating n married couples at 2*n chairs around a circular table, men and women in alternate positions, so that no husband is next to his wife.

It is known [Riordan, ch. 7] that a(n) is the number of arrangements of n non-attacking rooks on the positions of the 1's in an n X n (0,1)-matrix A_n with 0's in positions (i,i), i = 1,...,n, (i,i+1), i = 1,...,n-1, and (n,1). This statement could be written as a(n) = per(A_n). For example, A_5 has the form

001*11

1*0011

11001*                        (1)

11*100

0111*0,

where 5 non-attacking rooks are denoted by {1*}.

We can indicate a one-to-one correspondence between arrangements of n non-attacking rooks on the 1's of a matrix A_n and arrangements of n married couples around a circular table by the rules of the ménage problem, after the ladies w_1, w_2,..., w_n have taken the chairs numbered

2*n, 2, 4, ..., 2*n-2         (2)

respectively. Suppose we consider an  arrangement of rooks: (1,j_1), (2,j_2),..., (n,j_n). Then the men m_1, m_2,..., m_n took chairs with numbers

2*j_i - 3 (mod 2*n),          (3)

where the residues are chosen from the interval[1,2*n]. Indeed {j_i} is a permutation of 1,...,n. So {2*j_i-3}(mod 2*n) is a permutation of odd positive integers <= 2*n-1. Besides, the distance between m_i and w_i cannot be 1. Indeed, the equality |2*(j_i-i)-1| = 1 (mod 2*n) is possible if and only if either j_i=i  or j_i=i+1 (mod n) that correspond to positions of 0's in matrix A_n.

For example, in the case of positions of {1*} in(1) we have j_1=3, j_2=1, j_3=5, j_4=2, j_5=4. So, by(2) and (3) the chairs 1,2,...,10 are taken by m_4, w_2, m_1, w_3, m_5, w_4, m_3, w_5, m_2, w_1, respectively. (End)

The first 20 terms of this sequence were calculated in 1891 by E. Lucas (see [Lucas, p. 495]). - Peter J. C. Moses, June 26 2015

REFERENCES

W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th Ed. Dover, p. 50.

M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Nicola Zanichelli Editore, Bologna 1988, Chapter 3, p. 78.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 185, mu(n).

Kaplansky, Irving and Riordan, John, The probleme des menages, Scripta Math. 12, (1946). 113-124.

E. Lucas, Théorie des nombres, Paris, 1891, pp. 491-495.

P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 1, p 256.

T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112. - N. J. A. Sloane, Feb 24 2011

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.

V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. (J. of the Akademy of Sciences of Russia) 4(1992), 91-110. - Vladimir Shevelev, Mar 22 2010

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.

J. Touchard, Permutations discordant with two given permutations, Scripta Math., 19 (1953), 108-119.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

Max Alekseyev, On enumeration of seating arrangements of couples around a circular table, Automatic Sequences Workshop, 2015

Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the ménage problem, Amer. Math. Monthly 93 (1986), no. 7, 514-519.

A. de Gennaro, How may latin rectangles are there?, arXiv:0711.0527 [math.CO] (2007), see p. 2.

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 372

Nick Hobson, Python program for this sequence

Irving Kaplansky, Solution of the "Problème des ménages", Bull. Amer. Math. Soc. 49, (1943). 784-785.

Irving Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc., 50 (1944), 906-914.

V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 221.

A. R. Kräuter, Über die Permanente gewisser zirkulärer Matrizen...

E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 495.

J. Touchard, Théorie des substitutions. Sur un problème de permutations, C. R. Acad. Sci. Paris 198 (1934), 631-633.

Eric Weisstein's World of Mathematics, Married Couples Problem

Eric Weisstein's World of Mathematics, Rooks Problem

M. Wyman and L. Moser, On the problème des ménages, Canad. J. Math., 10 (1958), 468-480.

D. Zeilberger, Automatic Enumeration of Generalized Menage Numbers, arXiv preprint arXiv:1401.1089, 2014

FORMULA

a(n) = ((n^2-2*n)*a(n-1) + n*a(n-2) - 4(-1)^n)/(n-2) for n >= 4.

a(n) = A059375(n)/(2*n!).

a(n) = Sum {0<=k<=n} (-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k). - Touchard (1934)

G.f.: x+(1-x)/(1+x)*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007

a(2^k+2)==0 (mod 2^k); for k>=2, a(2^k)==2(mod 2^k). - Vladimir Shevelev, Jan 14 2011

a(n) = round( 2*n*exp(-2)*BesselK(n,2) ) for n>0. - Mark van Hoeij, Oct 25 2011

EXAMPLE

a(0) = 1; () works. a(1) = 0; nothing works. a(2) = 0; nothing works. a(3) = 1; (201) works. a(4) = 2; (2301), (3012) work. a(5) = 13; (20413), (23401), (24013), (24103), (30412), (30421), (34012), (34021), (34102), (40123), (43012), (43021), (43102) work.

MAPLE

A000179 := n -> add ((-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k), k=0..n); # for n >= 2

U := proc(n) local k; add( (2*n/(2*n-k))*binomial(2*n-k, k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r, s) coeff( U(r), x, s ); end; A000179 := n->W(n, 0); # valid for n >= 2

MATHEMATICA

a[n_] := 2*n*Sum[(-1)^k*Binomial[2*n - k, k]*(n - k)!/(2*n - k), {k, 0, n}]; a[0] = 1; a[1] = 0; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 05 2012, from 2nd formula *)

PROG

(PARI) {a(n) = local(A); if( n<3, n==0, A = vector(n); A[3] = 1; for(k=4, n, A[k] = (k * (k - 2) * A[k-1] + k * A[k-2] - 4 * (-1)^k) / (k-2)); A[n])} /* Michael Somos, Jan 22 2008 */

(PARI) a(n)=if(n, round(2*n*exp(-2)*besselk(n, 2)), 1) \\ Charles R Greathouse IV, Nov 03 2014

(Haskell)

import Data.List (zipWith5)

a000179 n = a000179_list !! n

a000179_list = 1 : 0 : 0 : 1 : zipWith5

   (\v w x y z -> (x * y + (v + 2) * z - w) `div` v) [2..] (cycle [4, -4])

   (drop 4 a067998_list) (drop 3 a000179_list) (drop 2 a000179_list)

-- Reinhard Zumkeller, Aug 26 2013

CROSSREFS

Diagonal of A058087. Also a diagonal of A008305.

cf. A059375, A102761, A000186, A094047, A067998, A033999.

Sequence in context: A179237 A216316 A102761 * A246383 A189087 A037739

Adjacent sequences:  A000176 A000177 A000178 * A000180 A000181 A000182

KEYWORD

nonn,nice,easy,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, May 02 2000

Additional comments from David W. Wilson, Feb 18 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 7 17:52 EDT 2015. Contains 259358 sequences.