login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234616
Numbers of undirected cycles in the complete tripartite graph K_{n,n,n}.
5
1, 63, 6705, 1960804, 1271288295, 1541975757831, 3135880743480163, 9904953891455450640, 45915662047529291081589, 299038026557168514632822455, 2642895689915240835222121682301, 30814273315381549790551229559722628
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..100 (terms 1..50 from Andrew Howroyd)
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
Eric Weisstein's World of Mathematics, Graph Cycle
FORMULA
Row sums of A296546.
a(n) ~ sqrt(3*Pi) * 2^(3*n - 1/2) * n^(3*n - 1/2) / exp(3*n - 3/2). - Vaclav Kotesovec, Feb 17 2024
MATHEMATICA
Table[(Sum[Binomial[n, k] Binomial[n, i + p] Binomial[n, j + p] Binomial[k, i] Binomial[k - i, j] (k - 1)! (i + p)! (j + p)! 2^(k - i - j) Binomial[p + i + j - 1, k - 1], {k, n}, {i, 0, k}, {j, 0, k - i}, {p, k - i - j, n}] + Sum[Binomial[n, k]^2 k! (k - 1)!, {k, 2, n}])/2 - n^2, {n, 10}] (* Eric W. Weisstein, May 26 2017 *)
Table[(n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, 1] - 3) + Sum[2^(k - i - j) Binomial[k, i] Binomial[k - i, j] Binomial[n, k] Binomial[n, i + p] Binomial[n, j + p] Binomial[i + j + p - 1, k - 1] (k - 1)! (i + p)! (j + p)!, {k, n}, {i, 0, k}, {j, 0, k - i}, {p, k - i - j, n}])/2, {n, 10}] (* Eric W. Weisstein, May 25 2023 *)
PROG
(PARI)
c(n, k, i, j, p) = {binomial(n, k)*binomial(n, i+p)*binomial(n, j+p)*binomial(k, i)*binomial(k-i, j)*(k-1)!*(i+p)!*(j+p)!*2^(k-i-j)*binomial(p+i+j-1, k-1)}
a(n)={(sum(k=1, n, sum(i=0, k, sum(j=0, k-i, sum(p=k-i-j, n, c(n, k, i, j, p) )))) + sum(k=2, n, binomial(n, k)^2*k!*(k-1)!))/2 - n^2} \\ Andrew Howroyd, May 25 2017
(Python)
from sympy import binomial, factorial
def c(n, k, i, j, p): return binomial(n, k)*binomial(n, i + p)*binomial(n, j + p)*binomial(k, i)*binomial(k - i, j)*factorial(k - 1)*factorial(i + p)*factorial(j + p)*2**(k - i - j)*binomial(p + i + j - 1, k - 1)
def a(n): return (sum([sum([sum([sum([c(n, k, i, j, p) for p in range(k - i - j, n + 1)]) for j in range(k - i + 1)]) for i in range(k + 1)]) for k in range(1, n + 1)]) + sum(binomial(n, k)**2*factorial(k)*factorial(k - 1) for k in range(2, n + 1)))/2 - n**2
print([a(k) for k in range(1, 13)]) # Indranil Ghosh, Aug 14 2017, after PARI
CROSSREFS
Cf. A296546 (cycle polynomial coefficients of K_n,n,n).
Sequence in context: A296782 A292782 A251011 * A093263 A069433 A178634
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Dec 28 2013
EXTENSIONS
a(7)-a(12) from Andrew Howroyd, May 25 2017
STATUS
approved