login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137886
Number of (directed) Hamiltonian paths in the n-crown graph.
3
12, 144, 3840, 138240, 6804000, 436504320, 35417088000, 3546005299200, 429451518988800, 61883150757120000, 10463789706751180800, 2051763183437532364800, 461802751261297205760000, 118254166096501129863168000
OFFSET
3,1
COMMENTS
The reference to A094047 arises in the formula because that sequence is also the number of directed Hamiltonian cycles in the n-crown graph. (Each cycle can be broken in 2n ways to give a path.) - Andrew Howroyd, Feb 21 2016
Also, the number of ways of seating n married couples at 2*n chairs arranged side-by-side in a straight line, men and women in alternate positions, so that no husband is next to his wife. - Andrew Howroyd, Sep 19 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 3..253 (terms 3..50 from Andrew Howroyd)
Eric Weisstein's World of Mathematics, Crown Graph
Eric Weisstein's World of Mathematics, Hamiltonian Path
FORMULA
For n>3, a(n) = 2*n*A094047(n) + n*a(n-1) = A059375(n) + n*a(n-1). - Andrew Howroyd, Feb 21 2016
a(n) ~ 4*Pi*n^(2*n+1) / exp(2*n+2). - Vaclav Kotesovec, Feb 25 2016
a(n) = (n-1)*n*a(n-1) + (n-1)^2*n*a(n-2) + (n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Feb 25 2016
a(n) = 2*n! * A000271(n). - Andrew Howroyd, Sep 19 2017
MATHEMATICA
Table[2 n! Sum[(-1)^(n - k) k! Binomial[n + k, 2 k], {k, 0, n}], {n, 3, 20}] (* Eric W. Weisstein, Sep 20 2017 *)
Table[2 (-1)^n n! HypergeometricPFQ[{1, -n, n + 1}, {1/2}, 1/4], {n, 3, 20}] (* Eric W. Weisstein, Sep 20 2017 *)
PROG
(PARI) /* needs the routine nhp() from the Alekseyev link */
{ A137886(n) = nhp( matrix(2*n, 2*n, i, j, if(min(i, j)<=n && max(i, j)>n && abs(j-i)!=n, 1, 0)) ) }
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Feb 20 2008
EXTENSIONS
More terms from Max Alekseyev, Feb 13 2009
a(14) from Eric W. Weisstein, Jan 15 2014
a(15)-a(16) from Andrew Howroyd, Feb 21 2016
STATUS
approved