login
A097303
Denominators in Stirling's asymptotic series.
2
1, 12, 144, 8640, 103680, 1741824, 104509440, 179159040, 2149908480, 1418939596800, 23838185226240, 338068808663040, 20284128519782400, 18723810941337600, 32097961613721600, 229179445921972224000
OFFSET
0,2
COMMENTS
Numerators coincide with the numbers depicted in A001163 but differ for the first time at entry nr. 33. See the W. Lang link.
Stirling's formula for Gamma(z) (|arg(z)| < Pi) uses the asymptotic series Sum_{k>=0} (N(k)/a(k))*((1/z)^k)/k!. For N(k) see the W. Lang link.
FORMULA
a(n) = denominator(s(n)), where the signed rationals s(n) are the coefficients of ((1/z)^k)/k! in the asymptotic series appearing in Stirling's formula for Gamma(z).
MATHEMATICA
max = 15; se = Series[(E^x*Sqrt[1/x]*Gamma[x+1])/(x^x*Sqrt[2*Pi]), {x, Infinity, max}]; Denominator[ CoefficientList[ se /. x -> 1/x, x]*Range[0, max]!] (* Jean-François Alcover, Nov 03 2011 *)
CROSSREFS
Cf. A001163, A001164 (Stirling formula with further links and references.).
Sequence in context: A143248 A138444 A137886 * A067219 A075619 A055332
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 13 2004
STATUS
approved