login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234500
Integers of the form (p*q*r*s + 1)/2, where p, q, r, s are distinct primes.
6
578, 683, 893, 998, 1073, 1208, 1403, 1502, 1523, 1568, 1628, 1658, 1853, 1898, 1943, 1964, 2153, 2195, 2243, 2258, 2321, 2393, 2423, 2468, 2503, 2558, 2594, 2657, 2783, 2828, 2933, 3023, 3053, 3098, 3140, 3203, 3273, 3278, 3350, 3383, 3392, 3518, 3548, 3581
OFFSET
1,1
FORMULA
1 + A234105.
EXAMPLE
578 = (3*5*7*11 + 1)/2.
MATHEMATICA
t = Select[Range[1, 20000, 2], Map[Last, FactorInteger[#]] == Table[1, {4}] &]; Take[(t + 1)/2, 120] (* A234500*)
v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A234501 *)
(w + 1)/2 (* A234502 *) (* Peter J. C. Moses, Dec 23 2013 *)
With[{nn=20}, Select[Union[(Times@@#+1)/2&/@Subsets[Prime[Range[2, nn]], {4}]], #<=(105Prime[nn]+1)/2&]] (* Harvey P. Dale, Oct 18 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 01 2014
STATUS
approved