login
A234497
T(n,k) is the number of (n+1) X (k+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant-stress 1 X 1 tilings).
7
250, 1834, 1834, 13464, 17022, 13464, 99142, 158288, 158288, 99142, 728536, 1483566, 1856768, 1483566, 728536, 5368636, 13868952, 22124316, 22124316, 13868952, 5368636, 39476802, 130537496, 260915944, 337787398, 260915944
OFFSET
1,1
COMMENTS
Table starts
250 1834 13464 99142 728536
1834 17022 158288 1483566 13868952
13464 158288 1856768 22124316 260915944
99142 1483566 22124316 337787398 5086391644
728536 13868952 260915944 5086391644 96676755176
5368636 130537496 3122368992 78343976876 1903351845712
39476802 1224977498 36940569778 1187892774098 36413811919636
291119578 11577801970 443886085700 18458711626338 723978446690964
2142048610 109063132114 5267872223782 281836734313650
15807820384 1035175545192 63565110955752
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-1) +74*a(n-2) -295*a(n-3) -1008*a(n-4) +840*a(n-5).
k=2: [order 23].
EXAMPLE
Some solutions for n=2, k=4:
0 5 3 3 3 3 5 4 4 1 3 1 4 4 0 0 3 2 3 4
0 3 3 1 3 0 4 5 3 2 0 0 1 3 1 0 1 2 5 4
0 1 3 3 3 3 5 4 4 1 4 2 5 5 5 4 3 2 3 4
CROSSREFS
Sequence in context: A268269 A045185 A122270 * A234491 A249199 A249214
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 26 2013
STATUS
approved