OFFSET
1,16
COMMENTS
It might seem that a(n) > 0 for all n > 14, but a(43905) = 0. If a(n) > 0 infinitely often, then there are infinitely many primes of the form 3^m + 2.
Similarly, it might seem that for n > 26 there is a positive integer k < n such that m = phi(k)/2 + phi(n-k)/12 is an integer with 3^m - 2 prime, but n = 41213 is a counterexample.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..4000
EXAMPLE
a(15) = 1 since 15 = 1 + 14 with 3^(phi(1)/2 + phi(14)/12) + 2 = 3 + 2 = 5 prime.
a(23) = 1 since 23 = 10 + 13 with 3^(phi(10)/2 + phi(13)/12) + 2 = 3^3 + 2 = 29 prime.
a(24) = 1 since 24 = 3 + 21 with 3^(phi(3)/2 + phi(21)/12) + 2 = 3^2 + 2 = 11 prime.
a(37) = 1 since 37 = 9 + 28 with 3^(phi(9)/2 + phi(28)/12) + 2 = 3^4 + 2 = 83 prime.
MATHEMATICA
f[n_, k_]:=3^(EulerPhi[k]/2+EulerPhi[n-k]/12)+2
a[n_]:=Sum[If[PrimeQ[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 26 2013
STATUS
approved