login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231642 Triangle read by rows, t(n,k) = binomial(n,k) mod n, k <= n. 1
0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 3, 2, 3, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 0, 5, 0, 0, 2, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 4, 3, 0, 0, 0, 3, 4, 6, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 7, 0, 7, 0, 7, 2, 7, 0, 7, 0, 7, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Rows of the form 0,0,0,...,0,1 fit prime n.

LINKS

T. D. Noe, Rows n = 1..100 of triangle, flattened

Frank Ruskey, Carla D. Savage, and Stan Wagon, The Search for Simple Symmetric Venn Diagrams, page 1.

EXAMPLE

Triangle begins:

0;

0, 1;

0, 0, 1;

0, 2, 0, 1;

0, 0, 0, 0, 1;

0, 3, 2, 3, 0, 1;

0, 0, 0, 0, 0, 0, 1;

etc.

MATHEMATICA

t[n_, k_] := Mod[Binomial[n, k], n]; Table[t[n, k], {n, 14}, {k, n}] // Flatten

PROG

(PARI) t(n, k)=binomial(n, k)%n \\ Charles R Greathouse IV, Nov 12 2013

CROSSREFS

Sequence in context: A070103 A113048 A123758 * A288318 A219483 A239927

Adjacent sequences:  A231639 A231640 A231641 * A231643 A231644 A231645

KEYWORD

nonn,tabl

AUTHOR

Jean-Fran├žois Alcover, Nov 12 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 11:12 EDT 2019. Contains 324152 sequences. (Running on oeis4.)