|
|
A231642
|
|
Triangle read by rows, t(n,k) = binomial(n,k) mod n, k <= n.
|
|
1
|
|
|
0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 3, 2, 3, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 0, 5, 0, 0, 2, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 4, 3, 0, 0, 0, 3, 4, 6, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 7, 0, 7, 0, 7, 2, 7, 0, 7, 0, 7, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
COMMENTS
|
Rows of the form 0,0,0,...,0,1 fit prime n.
|
|
LINKS
|
T. D. Noe, Rows n = 1..100 of triangle, flattened
Frank Ruskey, Carla D. Savage, and Stan Wagon, The Search for Simple Symmetric Venn Diagrams, page 1.
|
|
EXAMPLE
|
Triangle begins:
0;
0, 1;
0, 0, 1;
0, 2, 0, 1;
0, 0, 0, 0, 1;
0, 3, 2, 3, 0, 1;
0, 0, 0, 0, 0, 0, 1;
etc.
|
|
MATHEMATICA
|
t[n_, k_] := Mod[Binomial[n, k], n]; Table[t[n, k], {n, 14}, {k, n}] // Flatten
|
|
PROG
|
(PARI) t(n, k)=binomial(n, k)%n \\ Charles R Greathouse IV, Nov 12 2013
|
|
CROSSREFS
|
Sequence in context: A113048 A331671 A123758 * A288318 A219483 A239927
Adjacent sequences: A231639 A231640 A231641 * A231643 A231644 A231645
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Jean-François Alcover, Nov 12 2013
|
|
STATUS
|
approved
|
|
|
|