The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123758 Expansion of q^(-1/3)*eta(q)*eta(q^4)*eta(q^5)/eta(q^2) in powers of q. 1
 1, -1, 0, -1, 0, -1, 2, 0, 1, 0, 0, 0, 0, 1, 0, -2, -1, 0, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 2, 0, 0, -2, 0, -1, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, -1, 0, -1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(-q^5)*psi(-q) in powers of q where f(),psi() are Ramanujan theta functions. Euler transform of period 20 sequence [ -1, 0, -1, -1, -2, 0, -1, -1, -1, -1, -1, -1, -1, 0, -2, -1, -1, 0, -1, -2, ...]. Product_{k>0} (1-x^k)*(1+x^(2k))*(1-x^(5k)). a(8n+2) = a(8n+4) = 0. MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3) eta[q] eta[q^4] eta[q^5]/eta[q^2], {q, 0, 100}], q] (* G. C. Greubel, Apr 19 2018 *) PROG (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^4+A)*eta(x^5+A)/eta(x^2+A), n))} (PARI) {a(n) = local(s, k); if(n<0, 0, n=24*n+8; for(j=1, sqrtint(n\5), if((j^2%6==1)& issquare( (n-5*j^2)/3, &k)& (k%2), s+= (-1)^((j+1)\6+ (k+2)\4))); s)} CROSSREFS Sequence in context: A070103 A113048 A331671 * A231642 A288318 A219483 Adjacent sequences:  A123755 A123756 A123757 * A123759 A123760 A123761 KEYWORD sign AUTHOR Michael Somos, Oct 12 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 03:32 EST 2021. Contains 340360 sequences. (Running on oeis4.)