login
A231641
T(n,k)=Number of nXk 0..2 arrays with no element having a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
6
1, 1, 1, 3, 5, 3, 8, 25, 25, 8, 21, 124, 362, 124, 21, 55, 599, 5110, 5110, 599, 55, 144, 2907, 69671, 193596, 69671, 2907, 144, 377, 14098, 953726, 7176194, 7176194, 953726, 14098, 377, 987, 68345, 13036446, 266730604, 722149510, 266730604
OFFSET
1,4
COMMENTS
Table starts
....1.......1...........3..............8..............21...............55
....1.......5..........25............124.............599.............2907
....3......25.........362...........5110...........69671...........953726
....8.....124........5110.........193596.........7176194........266730604
...21.....599.......69671........7176194.......722149510......72839521581
...55....2907......953726......266730604.....72839521581...19935360619245
..144...14098....13036446.....9902703284...7337927223290.5448852806527104
..377...68345...178192422...367678630271.739300928401336
..987..331411..2435768976.13651615789060
.2584.1606976.33294651915
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -a(n-2) for n>3
k=2: a(n) = 7*a(n-1) -11*a(n-2) +4*a(n-3) -14*a(n-4) +48*a(n-5) -48*a(n-6) +16*a(n-7)
k=3: [order 38] for n>39
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..1....0..0..1..2....0..0..1..1....0..0..1..0....0..0..2..1
..1..2..0..0....1..0..0..1....0..1..0..2....0..0..2..2....2..1..1..1
..2..1..2..1....0..0..1..2....0..0..2..0....2..2..1..0....2..2..1..1
..1..1..1..2....0..1..1..1....1..2..1..1....2..2..0..0....0..0..1..1
CROSSREFS
Column 1 is A001906(n-1)
Sequence in context: A328915 A100338 A094444 * A099446 A198827 A199668
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 12 2013
STATUS
approved