The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231599 T(n,k) is the coefficient of x^k in Product_{i=1..n} (1-x^i); triangle T(n,k), n >= 0, 0 <= k <= A000217(n), read by rows. 14
 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 0, 2, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 1, 1, -1, 1, -1, -1, 0, 0, 1, 0, 2, 0, -1, -1, -1, -1, 0, 2, 0, 1, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 0, 1, 1, 0, -1, -1, -2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,20 COMMENTS From Tilman Piesk, Feb 21 2016: (Start) The sum of each row is 0. The even rows are symmetric; in the odd rows numbers with the same absolute value and opposed signum are symmetric to each other. The odd rows where n mod 4 = 3 have the central value 0. The even rows where n mod 4 = 0 have positive central values. They form the sequence A269298 and are also the rows maximal values. A086376 contains the maximal values of each row, A160089 the maximal absolute values, and A086394 the absolute parts of the minimal values. Rows of this triangle can be used to efficiently calculate values of A026807. (End) LINKS Alois P. Heinz, Rows n = 0..40, flattened Dorin Andrica, Ovidiu Bagdasar, On some results concerning the polygonal polynomials, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11. Tilman Piesk, Rows n = 0..40 as left-aligned and centered table FORMULA T(n,k) = [x^k] Product_{i=1..n} (1-x^i). T(n,k) = T(n-1, k) + (-1)^n*T(n-1, n*(n+1)/2-k), n > 1. - Gevorg Hmayakyan, Feb 09 2017 [corrected by Giuliano Cabrele, Mar 02 2018] EXAMPLE For n=2 the corresponding polynomial is (1-x)*(1-x^2) = 1 -x - x^2 + x^3. Irregular triangle starts:   k    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 n 0      1 1      1  -1 2      1  -1  -1   1 3      1  -1  -1   0   1   1  -1 4      1  -1  -1   0   0   2   0   0  -1  -1   1 5      1  -1  -1   0   0   1   1   1  -1  -1  -1   0   0   1   1  -1 MAPLE T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))         (expand(mul(1-x^i, i=1..n))): seq(T(n), n=0..10);  # Alois P. Heinz, Dec 22 2013 MATHEMATICA Table[If[k == 0, 1, Coefficient[Product[(1 - x^i), {i, n}], x^k]], {n, 0, 6}, {k, 0, (n^2 + n)/2}] // Flatten (* Michael De Vlieger, Mar 04 2018 *) PROG (PARI) row(n) = pol = prod(i=1, n, 1 - x^i); for (i=0, poldegree(pol), print1(polcoeff(pol, i), ", ")); \\ Michel Marcus, Dec 21 2013 (Python) from sympy import poly, symbols def a231599_row(n):     if n == 0:         return      x = symbols('x')     p = 1     for i in range(1, n+1):         p *= poly(1-x**i)     p = p.all_coeffs()     return p[::-1] # Tilman Piesk, Feb 21 2016 CROSSREFS Cf. A000217 (triangular numbers). Cf. A086376, A160089, A086394 (maxima, etc.). Cf. A269298 (central nonzero values). Sequence in context: A037880 A241035 A140698 * A333290 A321924 A124764 Adjacent sequences:  A231596 A231597 A231598 * A231600 A231601 A231602 KEYWORD sign,look,tabf AUTHOR Marc Bogaerts, Nov 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 8 08:48 EDT 2020. Contains 333313 sequences. (Running on oeis4.)