login
A160089
The maximum of the absolute value of the coefficients of Pn = (1-x)(1-x^2)(1-x^3)...(1-x^n).
9
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11, 16, 16, 19, 21, 28, 29, 34, 41, 50, 56, 68, 80, 100, 114, 135, 158, 196, 225, 269, 320, 388, 455, 544, 644, 786, 921, 1111, 1321, 1600, 1891, 2274, 2711, 3280, 3895, 4694, 5591, 6780, 8051, 9729, 11624
OFFSET
0,5
COMMENTS
If n is even then a(n) is the absolute value of the coefficient of z^(n(n+1)/4). If n is odd, it is an open question as to which coefficient is a(n).
For odd n values, the Berkovich/Uncu reference provides explicit conjectural formulas for a(n). - Ali Uncu, Jul 19 2020
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms n = 1..100 from Theodore Kolokolnikov, terms n = 101..1000 from Alois P. Heinz)
Alexander Berkovich, and Ali K. Uncu, Where do the maximum absolute q-series coefficients of (1-q)(1-q^2)(1-q^3)...(1-q^(n-1))(1-q^n) occur?, arXiv:1911.03707 [math.NT], 2019.
Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
FORMULA
a(n) >= A086376(n). - R. J. Mathar, Jun 01 2011
From Vaclav Kotesovec, May 04 2018: (Start)
a(n)^(1/n) tends to 1.2197...
Conjecture: a(n)^(1/n) ~ sqrt(A133871(n)^(1/n)) ~ 1.21971547612163368901359933...
(End)
MAPLE
A160089 := proc(n)
g := expand(mul( 1-x^k, k=1..n) );
convert(PolynomialTools[CoefficientVector](g, x), list):
max(op(map(abs, %)));
end proc:
MATHEMATICA
p = 1; Flatten[{1, Table[p = Expand[p*(1 - x^n)]; Max[Abs[CoefficientList[p, x]]], {n, 1, 100}]}] (* Vaclav Kotesovec, May 03 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Apr 12 2017
STATUS
approved