login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230820
Table, read by antidiagonals, of palindromic primes in base b expressed in decimal.
2
3, 2, 5, 2, 13, 7, 2, 3, 23, 17, 2, 3, 5, 151, 31, 2, 3, 31, 17, 173, 73, 2, 3, 5, 41, 29, 233, 107, 2, 3, 5, 7, 67, 59, 757, 127, 2, 3, 5, 71, 37, 83, 257, 937, 257, 2, 3, 5, 7, 107, 43, 109, 373, 1093, 313, 2, 3, 5, 7, 73, 157, 61, 701, 409, 1249, 443
OFFSET
1,1
EXAMPLE
\r
b\
.2.3...5...7...17...31...73..107..127...257...313...443..1193..1453..1571.=A016041
.3.2..13..23..151..173..233..757..937..1093..1249..1429..1487..1667..1733.=A029971
.4.2...3...5...17...29...59..257..373...409...461...509...787...839...887.=A029972
.5.2...3..31...41...67...83..109..701...911..1091..1171..1277..1327..1667.=A029973
.6.2...3...5....7...37...43...61...67...191...197..1297..1627..1663..1699.=A029974
.7.2...3...5...71..107..157..257..271...307..2549..2647..2801..3347..3697.=A029975
.8.2...3...5....7...73...89...97..113...211...227...251...349...373...463.=A029976
.9.2...3...5....7..109..127..173..191...227...337...373...419...601...619.=A029977
10.2...3...5....7...11..101..131..151...181...191...313...353...373...383.=A002385
11.2...3...5....7..199..277..421..443...499...521...587...643...709...743.=A029978
12.2...3...5....7...11...13..157..181...193...229...241...277...761...773.=A029979
...
inf..2..3..5..7..11..13..17..19..23..29..31..37..41..43..47..53..59..61...=A000040
MAPLE
A230820 := proc(b, n)
option remember;
local a, dgs ;
if n = 1 then
if b = 2 then
return 3;
else
return 2;
end if;
else
for a from procname(b, n-1)+1 do
if isprime(a) then
ispal := true ;
dgs := convert(a, base, b) ;
for i from 1 to nops(dgs)/2 do
if op(i, dgs) <> op(-i, dgs) then
ispal := false;
end if;
end do:
if ispal then
return a;
end if;
end if;
end do:
end if;
end proc:
for b from 2 to 9 do
for n from 1 to 9 do
printf("%3d ", A230820(b, n)) ;
end do:
printf("\n") ;
end do; # R. J. Mathar, Feb 16 2014
MATHEMATICA
palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[ n, base]}, idn == Reverse@ idn]; Table[Select[Prime@Range@500, palQ[#, k + 1] &][[b - k + 1]], {b, 11}, {k, b, 1, -1}] // Flatten
KEYWORD
nonn,base,easy,tabl
AUTHOR
Robert G. Wilson v, Oct 30 2013
STATUS
approved