login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016041 Primes that are palindromic in base 2 (but written here in base 10). 32
3, 5, 7, 17, 31, 73, 107, 127, 257, 313, 443, 1193, 1453, 1571, 1619, 1787, 1831, 1879, 4889, 5113, 5189, 5557, 5869, 5981, 6211, 6827, 7607, 7759, 7919, 8191, 17377, 18097, 18289, 19433, 19609, 19801, 21157, 22541, 22669, 22861, 23581, 24029 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A002385 for palindromic primes in base 10, and A256081 for primes whose binary expansion is "balanced" (see there) but not palindromic. - M. F. Hasler, Mar 14 2015

Number of terms less than 4^k, k=0,1,2,...: 2, 4, 6, 9, 12, 19, 31, 54, 94, 188, 330, 601, 1081, 1937, 3658, 6757, 12329, 23128, 43910, 83378, 156050, 295917, 570397, 1090773, 2077091, 3991188, 7717805, 14825248, 28507573, 54938370, 106350935, ..., partial sums of A095741 plus 2. - Robert G. Wilson v, Feb 23 2018

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Zak Seidov, terms 1001..3000 from Michael De Vlieger)

Kevin S. Brown, On General Palindromic Numbers

Patrick De Geest, World!Of Palindromic Primes

FORMULA

Sum_{n>=1} 1/a(n) = A194097. - Amiram Eldar, Mar 19 2021

MATHEMATICA

lst = {}; Do[ If[ PrimeQ@n, t = IntegerDigits[n, 2]; If[ FromDigits@t == FromDigits@ Reverse@ t, AppendTo[lst, n]]], {n, 3, 50000, 2}]; lst (* syntax corrected by Robert G. Wilson v, Aug 10 2009 *)

pal2Q[n_] := Reverse[x = IntegerDigits[n, 2]] == x; Select[Prime[Range[2800]], pal2Q[#] &] (* Jayanta Basu, Jun 23 2013 *)

genPal[n_Integer, base_Integer: 10] := Block[{id = IntegerDigits[n, base], insert = Join[{{}}, {# - 1} & /@ Range[base]]}, FromDigits[#, base] & /@ (Join[id, #, Reverse@id] & /@ insert)]; k = 0; lst = {}; While[k < 100, AppendTo[lst, Select[ genPal[k, 2], PrimeQ]]; lst = Flatten@ lst; k++]; lst (* Robert G. Wilson v, Feb 23 2018 *)

PROG

(PARI) is(n)=isprime(n)&&Vecrev(n=binary(n))==n \\ M. F. Hasler, Feb 23 2018

(MAGMA) [NthPrime(n): n in [1..5000] | (Intseq(NthPrime(n), 2) eq Reverse(Intseq(NthPrime(n), 2)))]; // Vincenzo Librandi, Feb 24 2018

CROSSREFS

Intersection of A000040 and A006995.

First row of A095749.

A095741 gives the number of terms in range [2^(2n), 2^(2n+1)].

Cf. A095730 (primes whose Zeckendorf expansion is palindromic), A029971 (primes whose ternary (base-3) expansion is palindromic).

Cf. A117697 (written in base 2), A002385, A194097, A256081.

Sequence in context: A296422 A174394 A057476 * A140797 A245730 A038893

Adjacent sequences:  A016038 A016039 A016040 * A016042 A016043 A016044

KEYWORD

nonn,easy,base

AUTHOR

Robert G. Wilson v

EXTENSIONS

More terms from Patrick De Geest

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 22:36 EDT 2022. Contains 354885 sequences. (Running on oeis4.)