OFFSET
1,1
FORMULA
From Amiram Eldar, Jul 30 2023: (Start)
Equals exp(Sum_{k>=1} (2^(2*k)-1)*B(2*k)*(2*Pi)^(2*k)*(zeta(2*k)-1-1/2^(2*k))/(2*k*(2*k)!), where B(k) is the k-th Bernoulli number.
Equals exp(Sum_{k>=1} (-1)^(k+1)*(2^(2*k)-1)*zeta(2*k)*(zeta(2*k)-1-1/2^(2*k))/k). (End)
EXAMPLE
6.15018022079681769526817395848212318982616780620281236328208157244...
MAPLE
evalf(product(1/sech(Pi/k), k=3..infinity), 120) # Vaclav Kotesovec, Sep 20 2014
MATHEMATICA
(* RealDigits[ N[ Product[ Cosh[ Pi/n], {n, 3, Infinity}], 111]][[1]] *) [This approach turns out to give incorrect numerical results. - Vaclav Kotesovec, Sep 20 2014]
Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(-1)^(n+1) * (2^(2*n)-1)/n * Zeta[2*n]*(Zeta[2*n] - 1 - 1/2^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* Vaclav Kotesovec, Sep 20 2014 *)
PROG
(PARI) default(realprecision, 150); exp(sumpos(n=3, log(cosh(Pi/n)))) \\ Vaclav Kotesovec, Sep 20 2014
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v, Oct 30 2013
EXTENSIONS
Corrected by Vaclav Kotesovec, Sep 20 2014
STATUS
approved