This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228933 Optimal ascending continued fraction expansion of phi-1=1/phi=(sqrt(5)-1)/2 . 1
 2, 4, -18, 322, 103682, 10749957122, 115561578124838522882, 13354478338703157414450712387359637585922, 178342091698891843163466683840822101223162205277179656650156983624835803932590082 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A228929 for the definition of "optimal ascending continued fraction". Conjecture: The golden ratio (phi) expansion exhibits from the fourth term the recurrence relation a(n) = a(n-1)^2 - 2 described in A228931. LINKS FORMULA a(n)=a(n-1)^2-2 for n>3 For n>3, a(n) = (sqrt(5)+2)^(2^(n-2)) + (sqrt(5)-2)^(2^(n-2)). - Vaclav Kotesovec, Sep 20 2013 EXAMPLE phi = 1+1/2*(1+1/4*(1-1/18*(1+1/322*(1+1/103682*(1+1/10749957122*(1+...)))))) MAPLE ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc # List the first 8 terms of the expansion of 1/phi ArticoExp((sqrt(5)-1)/2, 8) MATHEMATICA Flatten[{2, 4, RecurrenceTable[{a[n] == a[n-1]^2 - 2, a[3] == -18}, a, {n, 3, 10}]}] (* Vaclav Kotesovec, Sep 20 2013 *) CROSSREFS Cf. A094214, A228929, A228931, A228932. Sequence in context: A287612 A308755 A318394 * A306193 A323702 A318531 Adjacent sequences:  A228930 A228931 A228932 * A228934 A228935 A228936 KEYWORD sign,cofr AUTHOR Giovanni Artico, Sep 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 06:01 EDT 2019. Contains 328291 sequences. (Running on oeis4.)