The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228930 Optimal ascending continued fraction expansion of e - 2. 2
 1, -4, 8, 67, 266, 9757, 47748, -97258, -251115, 671488, -4724169, -28356343, 125269419, -498668029, -5426804695, 15313259790, -40462770156, 105160602326, -4412226092528, -350847041434052, -54342998565206181 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A228929 for explanation. LINKS G. C. Greubel, Table of n, a(n) for n = 1..500 FORMULA Given a positive real number x, let z(0) = x - floor(x) and z(k+1) = abs(z(k))*round(1/abs(z(k))) - 1; then a(n) = sign(z(n))*round(1/abs(z(n))) for n>0. EXAMPLE e = 2 + 1*(1 - 1/4*(1 + 1/8*(1 + 1/67*(1 + 1/266*(1 + 1/9757*(1 + ...)))))). MAPLE ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc # List the first 20 terms of the expansion of exp(1)-2 ArticoExp(exp(1), 20) MATHEMATICA ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{\$MaxExtraPrecision = 50000}, ArticoExp[Exp[1] - 2, 20]] (* G. C. Greubel, Dec 26 2016 *) CROSSREFS Cf. A228929. Sequence in context: A086891 A117636 A285634 * A051226 A013112 A274461 Adjacent sequences:  A228927 A228928 A228929 * A228931 A228932 A228933 KEYWORD sign,cofr AUTHOR Giovanni Artico, Sep 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 01:44 EST 2020. Contains 331229 sequences. (Running on oeis4.)