This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228936 Expansion of (1 + 3*x - 3*x^3 - x^4)/(1 + 2*x^2 + x^4). 2
 1, 3, -2, -9, 2, 15, -2, -21, 2, 27, -2, -33, 2, 39, -2, -45, 2, 51, -2, -57, 2, 63, -2, -69, 2, 75, -2, -81, 2, 87, -2, -93, 2, 99, -2, -105, 2, 111, -2, -117, 2, 123, -2, -129, 2, 135, -2, -141, 2, 147 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Optimal simple continued fraction (with signed denominators) of exp(1/3). See A228935. The convergents are a subset of those of the standard regular continued fraction; the sequence of the signs of the difference between the convergents and exp(1/3) starts with: -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, ... For every couple of successive equal signs in this sequence there is a convergent of the standard expansion not present in this one. Repeating the expansion for other numbers of type 1/k a common pattern seems to emerge. Examples: exp(1/4) gives 1, 4, -2, -12, 2, 20, -2, -28, 2, 36, -2, -44, 2, 52, ... exp(1/5) gives 1, 5, -2, -15, 2, 25, -2, -35, 2, 45, -2, -55, 2, 65, ... so it seems that in general the terms for exp(1/k) are generated by the formulas a(0)=1, a(2n+1) = (-1)^n*k*(2n+1) for n >= 0, a(2n) = (-1)^n*2 for n > 0. These formulas give this expansion for exp(1/k): exp(1/k) = 1+1/(k+1/(-2+1/(-3k+1/(2+1/(5k+1/(-2+1/(-7k+1/(2+...)))))))). which can be rewritten in this equivalent form: exp(1/k) = 1+1/(k-1/(2+1/(3k-1/(2+1/(5k-1/(2+1/(7k-1/(2+...)))))))). This general expansion seems to be valid for any real value of k. Closed form for the general case exp(1/k): b(n) = (1+(-1)^n-(1-(-1)^n)*k*n/2)*i^(n*(n+1)) for n>0 and with i=sqrt(-1). [Bruno Berselli, Nov 01 2013] LINKS Index entries for linear recurrences with constant coefficients, signature (0,-2,0,-1). FORMULA This sequence can be generated by these formulas: a(0)=1; for n >= 0, a(2n+1) = 3*(-1)^n*(2n+1), a(2n) = 2*(-1)^n for n > 0. Formulae for the general case exp(1/k): b(0)=1; for n >= 0, b(2n+1) = (-1)^n*k*(2n+1), b(2n) = 2*(-1)^n. b(n) = 2*cos(n*Pi/2) + k*n*sin(n*Pi/2) for n > 0. exp(1/k) = 1+1/(k-1/(2+1/(3k-1/(2+1/(5k-1/(2+1/(7k-1/(2+...)))))))). G.f.: (1-x)*(1+x)*(1+k*x+x^2)/(1+x^2)^2. From Colin Barker, Oct 26 2013: (Start) a(n) = (-i)^n + i^n + (1/2)*(((-i)^n-i^n)*n)*(3*i) for n > 0, where i=sqrt(-1). a(2n) = 2*(3*n*sin(Pi*n) + cos(Pi*n)) for n > 0. a(2n+1) = (6*n+3)*cos(Pi*n) - 2*sin(Pi*n) for n >= 0. a(n) = -2*a(n-2) - a(n-4) for n > 4. G.f.: -(x-1)*(x+1)*(x^2+3*x+1) / (x^2+1)^2. (End) EXAMPLE exp(1/3) = 1+1/(3+1/(-2+1/(-9+1/(2+1/(15+1/(-2+1/(-21+1/(2+...)))))))) or exp(1/3) = 1+1/(3-1/(2+1/(9-1/(2+1/(15-1/(2+1/(21-1/(2+...)))))))) MAPLE SCF := proc (n, q::posint)::list; local L, i, z; Digits := 10000; L := [round(n)]; z := n; for i from 2 to q do if z = op(-1, L) then break end if; z := 1/(z-op(-1, L)); L := [op(L), round(z)] end do; return L end proc SCF(exp(1/3), 50)  # Giovanni Artico, Oct 26 2013 PROG (PARI) Vec(-(x-1)*(x+1)*(x^2+3*x+1)/(x^2+1)^2+O(x^100)) \\ Colin Barker, Oct 26 2013 CROSSREFS Cf. A133593, A133570, A228935. Sequence in context: A143074 A173624 A182023 * A169862 A245884 A192492 Adjacent sequences:  A228933 A228934 A228935 * A228937 A228938 A228939 KEYWORD sign,cofr,easy AUTHOR Giovanni Artico, Oct 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 01:40 EDT 2019. Contains 328025 sequences. (Running on oeis4.)