login
A227944
Number of iterations of "take odd part of phi" (A053575) to reach 1 from n.
11
0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 4, 1, 3, 2, 1, 2, 3, 3, 2, 2, 3, 3, 4, 1, 2, 2, 3, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 1, 4, 2, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 2, 4, 3, 1, 2, 3, 2, 2
OFFSET
1,7
COMMENTS
a(n) >= A256757(n) - 1.
FORMULA
For n > 1, a(n) = a(A053575(n)) + 1.
EXAMPLE
a(18) = 2 because it takes two steps to reach 1 from 18: phi(18) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1.
a(19) = 3 because it takes three steps to reach 1 from 19: phi(19) = 18, the odd part of which is 9, and phi(9) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1.
MATHEMATICA
oddPhi[n_] := Module[{phi = EulerPhi[n]}, phi/2^IntegerExponent[phi, 2]]; Table[Length[NestWhileList[oddPhi[#] &, n, # > 1 &]] - 1, {n, 100}] (* T. D. Noe, Oct 07 2013 *)
PROG
(Haskell)
a227944 n = fst $
until ((== 1) . snd) (\(i, x) -> (i + 1, a053575 x)) (0, n)
-- Reinhard Zumkeller, Oct 09 2013
CROSSREFS
A variant of A049115: a(n) = A049115(n) unless n is a power of 2.
Sequence in context: A295660 A193169 A193453 * A095772 A305392 A175301
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Oct 03 2013
STATUS
approved