

A305392


First differences of A140100.


8



2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) seems to take only the values 1 or 2, where {a(n), a(n+1)} may be {2, 1} or {1, 2} or {2, 2}, but not {1, 1}, and where {a(n), a(n+1), a(n+2), a(n+3)} may be {2, 1, 2, 1} or {1, 2, 1, 2} or {1, 2, 2, 1}, but not {2, 1, 1, 2}. The second differences of A140100 (first differences of this sequence) thus seem to take only the values 1 or 0 or 1.  Daniel Forgues, Aug 17 2018
From Michel Dekking, Mar 16 2019: (Start)
Let x be the tribonacci word x = A092782 = 1,2,1,3,1,2,1,1,...
Consider the morphism delta:
1 > 2212121212121,
2 > 22121212121,
3 > 2212121.
Conjecture: (a(n)) = 212121 delta(x).
(End)
Conjecture: This sequence (prefixed by 1 since A140100 should really begin with 0) is 1.TTW(2,1,1) where TTW is the ternary tribonacci word defined in A080843, or equally it is THETA(2,1,1), where THETA is defined in A275925.  N. J. A. Sloane, Mar 19 2019
All these conjectures are now theorems  see the Dekking et al. paper.  N. J. A. Sloane, Jul 22 2019


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..49999
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: nonattacking queens on infinite chess boards, arXiv:1907.09120, July 2019


FORMULA

a(n) = A140100(n+1)A140100(n).


CROSSREFS

For first differences of A140100, A140101, A140102, A140103 see A305392, A305374, A305393, A305394.
Sequence in context: A193453 A227944 A095772 * A175301 A214074 A003640
Adjacent sequences: A305389 A305390 A305391 * A305393 A305394 A305395


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jun 23 2018


STATUS

approved



