|
|
A193169
|
|
Number of odd divisors of lambda(n).
|
|
4
|
|
|
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 4, 1, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 4, 2, 2, 2, 2, 1, 4, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 1, 4, 4, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 3, 3, 2, 3, 4, 2, 4, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,7
|
|
COMMENTS
|
Lambda is the function in A002322.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = A001227(A002322(n)). - Michel Marcus, Mar 18 2016
|
|
EXAMPLE
|
a(19) = 3 because lambda(19) = 18 and the 3 odd divisors are {1, 3, 9}.
|
|
MATHEMATICA
|
f[n_] := Block[{d = Divisors[CarmichaelLambda[n]]}, Count[OddQ[d], True]]; Table[f[n], {n, 80}]
|
|
PROG
|
(Haskell)
a193169 = length . filter odd . a027750_row . a002322
-- Reinhard Zumkeller, Sep 02 2014
(PARI) a(n) = sumdiv(lcm(znstar(n)[2]), d, (d%2)); \\ Michel Marcus, Mar 18 2016
|
|
CROSSREFS
|
Cf. A002322.
Cf. A027750, A001227.
Sequence in context: A231776 A055734 A295660 * A193453 A227944 A095772
Adjacent sequences: A193166 A193167 A193168 * A193170 A193171 A193172
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Lagneau, Jul 22 2011
|
|
STATUS
|
approved
|
|
|
|