login
A055734
Number of distinct primes dividing phi(n).
3
0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 3, 3, 2, 2, 1, 3, 2, 2
OFFSET
1,7
COMMENTS
Murty and Murty show that the normal order of a(n) is (log log n)^2/2, that is, sum_{1 <= k <= n} a(k) ~ n/2 * (log log n)^2. - Charles R Greathouse IV, Sep 13 2013. See also Erdos-Pomerance (1985) and Erdos-Granville-et-al. (1990). - N. J. A. Sloane, Sep 02 2017
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
Paul Erdős and C. Pomerance, On the normal number of prime factors of phi(n), Rocky Mountain Math. J. 15 (1985), 343-352.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
M. Ram Murty and V. Kumar Murty, Prime divisors of Fourier coefficients of modular forms, Duke Math. J. 51:1 (1984), pp. 57-76.
FORMULA
a(n) = A001221(A000010(n)).
MATHEMATICA
Table[PrimeNu[EulerPhi[n]], {n, 1, 50}] (* G. C. Greubel, May 08 2017 *)
PROG
(PARI) a(n)=omega(eulerphi(n)) \\ Charles R Greathouse IV, Sep 13 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 11 2000
STATUS
approved