OFFSET
0,3
COMMENTS
Compare to the continued fraction for the Euler numbers (A000364):
1/(1-x/(1-2^2*x/(1-3^2*x/(1-4^2*x/(1-5^2*x/(1-6^2*x/(1-...))))))).
From Vaclav Kotesovec, Sep 24 2020: (Start)
In general, if s>0 and g.f. = 1/(1 - x/(1 - 2^s*x/(1 - 3^s*x/(1 - 4^s*x/(1 - 5^s*x/(1 - 6^s*x/(1 -...))))))), a continued fraction, then
a(n,s) ~ c(s) * d(s)^n * (n!)^s / sqrt(n), where
d(s) = (2*s*Gamma(2/s) / Gamma(1/s)^2)^s
c(s) = sqrt(s*d(s)/(2*Pi)). (End)
FORMULA
a(n) ~ c * d^n * (n!)^4 / sqrt(n), where d = 4096 * Pi^2 / Gamma(1/4)^8 = 1.353976395034780345656335026823167975194... and c = sqrt(2*d/Pi) = 64 * sqrt(2*Pi) / Gamma(1/4)^4 = 0.9284223954634658948993105287957575... - Vaclav Kotesovec, Aug 25 2017, updated Sep 23 2020
EXAMPLE
G.f.: A(x) = 1 + x + 17*x^2 + 1585*x^3 + 485729*x^4 + 372281761*x^5 +...
MAPLE
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (k - n - 1)^4 * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..13); # Peter Luschny, Oct 02 2023
MATHEMATICA
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^4*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
PROG
(PARI) {a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^4*x*CF)); polcoeff(CF, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2013
STATUS
approved