The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227884 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern up, down, up; triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2)-1), read by rows. 5
 1, 1, 2, 6, 19, 5, 70, 50, 331, 328, 61, 1863, 2154, 1023, 11637, 16751, 10547, 1385, 81110, 144840, 102030, 34900, 635550, 1314149, 1109973, 518607, 50521, 5495339, 12735722, 13046040, 6858598, 1781101, 51590494, 134159743, 157195762, 97348436, 36004400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Rows n = 0..170, flattened EXAMPLE T(4,1) = 5: 1324, 1423, 2314, 2413, 3412. Triangle T(n,k) begins: :  0 :      1; :  1 :      1; :  2 :      2; :  3 :      6; :  4 :     19,       5; :  5 :     70,      50; :  6 :    331,     328,      61; :  7 :   1863,    2154,    1023; :  8 :  11637,   16751,   10547,   1385; :  9 :  81110,  144840,  102030,  34900; : 10 : 635550, 1314149, 1109973, 518607, 50521; MAPLE b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(       add(b(u-j, o+j-1, [1, 3, 1][t]), j=1..u)+       add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o)))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)): seq(T(n), n=0..15); MATHEMATICA b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, Expand[Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]], {j, 1, u}]+Sum[b[u+j-1, o-j, 2]*If[t==3, x, 1], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Mar 29 2017, translated from Maple *) CROSSREFS Columns k=0-1 give: A177477, A227883. T(2n,n-1) gives A000364(n) for n>=2. Row sums give: A000142. Cf. A000111, A242783, A242784, A295987. Sequence in context: A262971 A253380 A128123 * A186769 A213400 A282080 Adjacent sequences:  A227881 A227882 A227883 * A227885 A227886 A227887 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, Oct 25 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 15:05 EDT 2020. Contains 334848 sequences. (Running on oeis4.)