OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^5 = exp(Sum_{n>=1} x^n / (n!)^5). - Ilya Gutkovskiy, Jul 17 2020
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n, k)^5*(n-k)*a(k)/n, k=0..n-1))
end:
seq(a(n), n=0..15); # Alois P. Heinz, Nov 07 2008
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Binomial[n, k]^5*(n-k)*a[k]/n, {k, 0, n-1}]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
PROG
(PARI) a61686=[1]; A061686(n)={n>1||return(1); #a61686<n&&a61686=concat(a61686, vector(n-#a61686)); a61686[n]&&return(a61686[n]); a61686[n]=sum(k=0, n-1, binomial(n, k)^5*(n-k)*A061686(k))/n} \\ M. F. Hasler, May 11 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 18 2001
EXTENSIONS
More terms from Alois P. Heinz, Nov 07 2008
STATUS
approved