This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225200 Triangle (read by rows) of coefficients of the polynomials (in ascending order) of the denominators of the generalized sequence of fractions f(n) defined recursively by f(1) = m/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal. 1
 1, -1, 1, 1, -1, 1, 1, -2, 2, -1, 1, 1, -4, 8, -10, 9, -6, 3, -1, 1, 1, -8, 32, -84, 162, -244, 298, -302, 258, -188, 118, -64, 30, -12, 4, -1, 1, 1, -16, 128, -680, 2692, -8456, 21924, -48204, 91656, -152952, 226580, -300664, 359992, -391232, 387820, -352074, 293685, -225696, 160120, -105024, 63750, -35832, 18654, -8994, 4014, -1656, 630, -220, 70, -20, 5, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS The degree of the polynomial in row n > 1 is 2^(n-2), hence the number of coefficients in row n > 1 is given by 2^(n-2) + 1 = A094373(n-1). For n > 2 a new row begins and ends always with 1. The sum and product of the generalized sequence of fractions given by m^(2^(n-2)) divided by the polynomial p(n) are equal, i. e. m + m/(m-1) = m * m/(m-1) = m^2/(m-1); m + m/(m-1) + m^2/(m^2-m+1) = m * m/(m-1) * m^2/(m^2-m+1) = m^4/(m^3-2*m^2+2*m-1). LINKS EXAMPLE The triangle T(n,k), k = 0..2^(n-1), begins 1; -1, 1; 1, -1, 1; 1, -2, 2, -1, 1; 1, -4, 8, -10, 9, -6, 3, -1, 1; MAPLE b:=n->m^(2^(n-2)); # n > 1 b(1):=m; p:=proc(n) option remember; p(n-1)*a(n-1); end; p(1):=1; a:=proc(n) option remember; b(n)-p(n); end; a(1):=1; seq(op(PolynomialTools[CoefficientList](a(i), m, termorder=forward)), i=1..7); CROSSREFS Cf. A100441, A225156 to A225162, A225201. Sequence in context: A104320 A242618 A180264 * A128706 A253586 A318191 Adjacent sequences:  A225197 A225198 A225199 * A225201 A225202 A225203 KEYWORD sign,tabf AUTHOR Martin Renner, May 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 20:23 EDT 2019. Contains 323528 sequences. (Running on oeis4.)