This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253586 The sum of the i-th ternary digits of n, k, and A(n,k) equals 0 (mod 3) for each i>=0 (leading zeros included); square array A(n,k), n>=0, k>=0, read by antidiagonals. 4
 0, 2, 2, 1, 1, 1, 6, 0, 0, 6, 8, 8, 2, 8, 8, 7, 7, 7, 7, 7, 7, 3, 6, 6, 3, 6, 6, 3, 5, 5, 8, 5, 5, 8, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 18, 3, 3, 0, 3, 3, 0, 3, 3, 18, 20, 20, 5, 2, 2, 5, 2, 2, 5, 20, 20, 19, 19, 19, 1, 1, 1, 1, 1, 1, 19, 19, 19, 24, 18, 18, 24, 0, 0, 6, 0, 0, 24, 18, 18, 24 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Antidiagonals n = 0..200, flattened Wikipedia, Set (game) FORMULA A(n,k) = A(floor(n/3),floor(k/3))*3+(6-(n mod 3)-(k mod 3) mod 3), A(0,0) = 0. EXAMPLE Square array A(n,k) begins:   0, 2, 1, 6, 8, 7, 3, 5, 4, ...   2, 1, 0, 8, 7, 6, 5, 4, 3, ...   1, 0, 2, 7, 6, 8, 4, 3, 5, ...   6, 8, 7, 3, 5, 4, 0, 2, 1, ...   8, 7, 6, 5, 4, 3, 2, 1, 0, ...   7, 6, 8, 4, 3, 5, 1, 0, 2, ...   3, 5, 4, 0, 2, 1, 6, 8, 7, ...   5, 4, 3, 2, 1, 0, 8, 7, 6, ...   4, 3, 5, 1, 0, 2, 7, 6, 8, ... MAPLE A:= proc(n, k) local i, j; `if`(n=0 and k=0, 0,       A(iquo(n, 3, 'i'), iquo(k, 3, 'j'))*3 +irem(6-i-j, 3))     end: seq(seq(A(n, d-n), n=0..d), d=0..14); CROSSREFS Column k=0 and row n=0 gives A004488. Main diagonal gives A001477. A(n,floor(n/3)) gives A060587. Cf. A090245, A253587. Sequence in context: A180264 A225200 A128706 * A318191 A208183 A214810 Adjacent sequences:  A253583 A253584 A253585 * A253587 A253588 A253589 KEYWORD nonn,base,tabl,look AUTHOR Alois P. Heinz, Jan 04 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 17:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)