This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225156 Denominators of the sequence of fractions f(n) defined recursively by f(1) = 3/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal. 2
 1, 2, 7, 67, 5623, 37772347, 1653794703916063, 3104205768420613437667191487267, 10767416908549848056705041797805600349527548164015760674541223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numerators of the sequence of fractions f(n) is A165421(n+1), hence sum(A165421(i+1)/a(i),i=1..n) = product(A165421(i+1)/a(i),i=1..n) = A165421(n+2)/A225163(n) = A011764(n-1)/A225163(n). LINKS Paul Yiu, Recreational Mathematics, Department of Mathematics, Florida Atlantic University, 2003, Chapter 5.4,  p. 207 (Project). FORMULA a(n) = 3^(2^(n-2)) - product(a(i),i=1..n-1), n > 1 and a(1) = 1. a(n) = 3^(2^(n-2)) - p(n) with a(1) = 1 and p(n) = p(n-1)*a(n-1) with p(1) = 1. EXAMPLE f(n) = 3, 3/2, 9/7, 81/67, ... 3 + 3/2 = 3 * 3/2 = 9/2; 3 + 3/2 + 9/7 = 3 * 3/2 * 9/7 = 81/14; ... MAPLE b:=n->3^(2^(n-2)); # n > 1 b(1):=3; p:=proc(n) option remember; p(n-1)*a(n-1); end; p(1):=1; a:=proc(n) option remember; b(n)-p(n); end; a(1):=1; seq(a(i), i=1..9); CROSSREFS Cf. A011764, A100441, A165421, A225163. Sequence in context: A099660 A207978 A307246 * A260968 A322223 A173226 Adjacent sequences:  A225153 A225154 A225155 * A225157 A225158 A225159 KEYWORD nonn,frac AUTHOR Martin Renner, Apr 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 17:41 EDT 2019. Contains 324196 sequences. (Running on oeis4.)