This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225202 Number of aperiodic tilings of an n X 1 rectangle by tiles of dimension 1 X 1 and 2 X 1. 3
 1, 1, 2, 3, 7, 9, 20, 29, 52, 80, 143, 217, 376, 588, 977, 1563, 2583, 4116, 6764, 10854, 17688, 28512, 46367, 74763, 121385, 196040, 317756, 513616, 832039, 1345192, 2178308, 3522981, 5702741, 9224880, 14930324, 24153416, 39088168, 63239220, 102333776, 165569166, 267914295, 433476128, 701408732 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(p)+1 = Fibonacci(p+1) for any prime p. LINKS Paul Tek, Table of n, a(n) for n = 1..1000 Paul Tek, Illustration of the first terms FORMULA a(n) is the MÃ¶bius transform of Fibonacci(n+1). EXAMPLE A 4 x 1 rectangle can be tiled in 5 ways: +-+-+-+-+  +---+-+-+  +-+---+-+  +-+-+---+      +---+---+ | | | | |  |   | | |  | |   | |  | | |   |      |   |   | +-+-+-+-+, +---+-+-+, +-+---+-+, +-+-+---+ and  +---+---+. The first tiling is 1-periodic, the last tiling is 2-periodic, while the others are not periodic. Hence a(4)=3. Note that although the three remaining tilings are equivalent by circular shift, they are considered as distinct. PROG (PARI) a(n)=sumdiv(n, d, moebius(n/d)*fibonacci(d+1)) CROSSREFS Cf. A000045, A001037. Sequence in context: A204520 A007649 A218909 * A046152 A057239 A319911 Adjacent sequences:  A225199 A225200 A225201 * A225203 A225204 A225205 KEYWORD nonn AUTHOR Paul Tek, May 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 12:01 EDT 2019. Contains 324352 sequences. (Running on oeis4.)