This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219259 Numbers k such that 25*k+1 is a square. 3
 0, 23, 27, 96, 104, 219, 231, 392, 408, 615, 635, 888, 912, 1211, 1239, 1584, 1616, 2007, 2043, 2480, 2520, 3003, 3047, 3576, 3624, 4199, 4251, 4872, 4928, 5595, 5655, 6368, 6432, 7191, 7259, 8064, 8136, 8987, 9063, 9960, 10040, 10983, 11067, 12056, 12144 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, numbers of the form m*(25*m+2), where m = 0,-1,1,-2,2,-3,3,... Also, integer values of h*(h+2)/25. LINKS Bruno Berselli, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA G.f.: x^2*(23 + 4*x + 23*x^2)/((1 + x)^2*(1 - x)^3). a(n) = a(-n+1) = (50*n*(n-1) + 21*(-1)^n*(2*n - 1) + 5)/8 + 2. 25*a(n)+1 = A047209(A197652(n+1))^2. MAPLE A219259:=proc(q) local n; for n from 1 to q do if type(sqrt(25*n+1), integer) then print(n); fi; od; end: A219259(1000); # Paolo P. Lava, Feb 19 2013 MATHEMATICA Select[Range[0, 13000], IntegerQ[Sqrt[25 # + 1]] &] CoefficientList[Series[x (23 + 4 x + 23 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *) PROG (MAGMA) [n: n in [0..13000] | IsSquare(25*n+1)]; (MAGMA) I:=[0, 23, 27, 96, 104]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013 CROSSREFS Cf. similar sequences listed in A219257. Cf. A047209. Sequence in context: A272761 A070774 A045806 * A116224 A127495 A255220 Adjacent sequences:  A219256 A219257 A219258 * A219260 A219261 A219262 KEYWORD nonn,easy AUTHOR Bruno Berselli, Nov 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 01:20 EDT 2019. Contains 328038 sequences. (Running on oeis4.)