login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219258 Numbers k such that 27*k+1 is a square. 3
0, 25, 29, 104, 112, 237, 249, 424, 440, 665, 685, 960, 984, 1309, 1337, 1712, 1744, 2169, 2205, 2680, 2720, 3245, 3289, 3864, 3912, 4537, 4589, 5264, 5320, 6045, 6105, 6880, 6944, 7769, 7837, 8712, 8784, 9709, 9785, 10760, 10840, 11865, 11949, 13024, 13112 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, numbers of the form m*(27*m+2), where m = 0,-1,1,-2,2,-3,3,...

Also, integer values of h*(h+2)/27.

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

G.f.: x^2*(25 + 4*x + 25*x^2)/((1 + x)^2*(1 - x)^3).

a(n) = a(-n+1) = (54*n*(n-1) + 23*(-1)^n*(2*n - 1) - 1)/8 + 3.

MAPLE

A219258:=proc(q)

local n;

for n from 1 to q do if type(sqrt(27*n+1), integer) then print(n);

fi; od; end:

A219258(1000); # Paolo P. Lava, Feb 19 2013

MATHEMATICA

Select[Range[0, 14000], IntegerQ[Sqrt[27 # + 1]] &]

CoefficientList[Series[x (25 + 4 x + 25 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)

PROG

(MAGMA) [n: n in [0..14000] | IsSquare(27*n+1)];

(MAGMA) I:=[0, 25, 29, 104, 112]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013

CROSSREFS

Cf. similar sequences listed in A219257.

Cf. A056081 (square roots of 27*a(n)+1).

Sequence in context: A127652 A259028 A234640 * A044861 A161835 A284045

Adjacent sequences:  A219255 A219256 A219257 * A219259 A219260 A219261

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Nov 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 11:55 EDT 2017. Contains 288710 sequences.