login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218569
Number of partitions p of n such that max(p)-min(p) = 6.
3
1, 1, 3, 3, 7, 8, 14, 18, 27, 33, 49, 59, 81, 100, 131, 158, 205, 243, 306, 365, 448, 527, 642, 748, 896, 1042, 1231, 1418, 1667, 1906, 2215, 2527, 2909, 3298, 3781, 4260, 4847, 5446, 6158, 6886, 7756, 8633, 9669, 10738, 11970, 13239, 14713, 16212, 17943
OFFSET
8,3
LINKS
G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014
FORMULA
G.f.: Sum_{k>0} x^(2*k+6)/Product_{j=0..6} (1-x^(k+j)).
a(n) = A097364(n,6) = A116685(n,6) = A194621(n,6) - A194621(n,5) = A218508(n) - A218507(n).
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(First[#]-Last[#]==6&)], {n, 8, 60}] (* Harvey P. Dale, Feb 09 2015 *)
CROSSREFS
Sequence in context: A339398 A241414 A218568 * A218570 A218571 A218572
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 02 2012
STATUS
approved