OFFSET
1,2
COMMENTS
Same as A097364 without the 0's.
Also number of partitions of n such that the difference between the largest and smallest parts is k (see A097364). Example: T(6,2)=3 because we have [4,2],[3,2,1] and [3,1,1,1].
Row 1 has one term; row n (n>=2) has n-1 terms.
Row sums yield the partition numbers (A000041).
T(n,0)=A000005(n) (number of divisors of n).
T(n,1)=A049820(n) (n minus number of divisors of n).
T(n,2)=A008805(n-4) for n>=4.
Sum(k*T(n,k),k=0..n-2)=A116686
LINKS
Alois P. Heinz, Rows n = 1..142, flattened
G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014.
Bernard L. S. Lin, Saisai Zheng, k-regular partitions and overpartitions with bounded part differences, The Raman. J. 56 (2021) 685-695
FORMULA
G.f.: sum(i>=1, x^i/(1-x^i)/prod(j=1..i-1, 1-t*x^j) ).
EXAMPLE
Triangle starts:
01: 1
02: 2
03: 2 1
04: 3 1 1
05: 2 3 1 1
06: 4 2 3 1 1
07: 2 5 3 3 1 1
08: 4 4 6 3 3 1 1
09: 3 6 6 7 3 3 1 1
10: 4 6 10 7 7 3 3 1 1
11: 2 9 10 12 8 7 3 3 1 1
12: 6 6 15 14 13 8 7 3 3 1 1
13: 2 11 15 20 16 14 8 7 3 3 1 1
14: 4 10 21 22 24 17 ...
T(6,2)=3 because we have [4,1,1],[3,2,1] and [2,2,1,1].
MAPLE
g:=sum(x^i/(1-x^i)/product(1-t*x^j, j=1..i-1), i=1..50): gser:=simplify(series(g, x=0, 18)): for n from 1 to 15 do P[n]:=coeff(gser, x^n) od: 1; for n from 2 to 15 do seq(coeff(P[n], t, j), j=0..n-2) od;
# yields sequence in triangular form
MATHEMATICA
rows = 15; max = rows + 2; col[k0_ /; k0 > 0] := col[k0] = Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; col[0] := Table[Switch[n, 1, 0, 2, 1, _, n - 1 - col[1][[n]]], {n, 1, Length[col[1]]}]; Join[{1}, Table[ col[k][[n+2]], {n, 0, rows-1}, {k, 0, n-1}] // Flatten] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 23 2006
STATUS
approved