login
A241414
Number of partitions p of n such that the number of numbers having multiplicity 1 in p is a part and the number of numbers having multiplicity > 1 is a part.
6
0, 0, 0, 0, 1, 3, 3, 7, 8, 14, 17, 25, 30, 45, 52, 72, 91, 123, 153, 205, 253, 339, 419, 542, 673, 864, 1051, 1336, 1625, 2023, 2461, 3040, 3642, 4490, 5383, 6527, 7837, 9481, 11291, 13624, 16208, 19403, 23087, 27541, 32619, 38832, 45923, 54327, 64150, 75737
OFFSET
0,6
FORMULA
a(n) + A241415(n) + A241416(n) = A239737(n) for n >= 0.
EXAMPLE
a(6) counts these 3 partitions: 411, 3111, 21111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]]
Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 23 2014
STATUS
approved