login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241414 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is a part and the number of numbers having multiplicity > 1 is a part. 6
0, 0, 0, 0, 1, 3, 3, 7, 8, 14, 17, 25, 30, 45, 52, 72, 91, 123, 153, 205, 253, 339, 419, 542, 673, 864, 1051, 1336, 1625, 2023, 2461, 3040, 3642, 4490, 5383, 6527, 7837, 9481, 11291, 13624, 16208, 19403, 23087, 27541, 32619, 38832, 45923, 54327, 64150, 75737 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..49.

FORMULA

a(n) + A241415(n) + A241416(n) = A239737(n) for n >= 0.

EXAMPLE

a(6) counts these 3 partitions:  411, 3111, 21111.

MATHEMATICA

z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] ==  &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]]

Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}]  (* A241413 *)

Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}]  (* A241414 *)

Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *)

Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *)

Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *)

Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)

CROSSREFS

Cf. A241413, A241415, A241416, A241417, A239737, A000041.

Sequence in context: A161416 A241637 A241641 * A218568 A218569 A218570

Adjacent sequences:  A241411 A241412 A241413 * A241415 A241416 A241417

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 04:35 EST 2020. Contains 331183 sequences. (Running on oeis4.)