login
A218566
Triangle T[r,c]=(r-1)*binomial(r-1,c-1)*(c-1)!*A093883(c), read by rows.
3
0, 1, 3, 2, 12, 240, 3, 27, 1080, 226800, 4, 48, 2880, 1209600, 3657830400, 5, 75, 6000, 3780000, 22861440000, 1267438233600000, 6, 108, 10800, 9072000, 82301184000, 9125555281920000, 11274806061917798400000
OFFSET
1,3
COMMENTS
T[b,d] gives the number of positive numbers that can be written in base b with d(d+1)/2 digits such that for each k=1,...,d some digit appears exactly k times, cf. A218560, A167819, A218556 and related sequences.
FORMULA
T[r,1] = r-1. T[r,2] = 3(r-1)^2. T[r,3] = 60(r-2)(r-1)^2, etc.
EXAMPLE
The first 6 rows of the triangle are:
r=1: 0;
r=2: 1, 3;
r=3: 2, 12, 240;
r=4: 3, 27, 1080, 226800;
r=5: 4, 48, 2880, 1209600, 3657830400;
r=6: 5, 75, 6000, 3780000, 22861440000, 1267438233600000.
Row 2 counts the numbers 1 and 4=100[2], 5=101[2], 6=110[2].
Row 3 counts the numbers {1, 2} and {9=100[3], 10=101[3], 12=110[3], 14=112[3], 16=121[3], ..., 25=221[3]} and {248=100012[3], ..., 714=222110[3]}.
PROG
(PARI) T(r, c)=(r-1)*binomial(r-1, c-1)*(c-1)!*A093883(c)
CROSSREFS
Sequence in context: A189736 A025232 A236435 * A125135 A055456 A198303
KEYWORD
nonn,tabl
AUTHOR
M. F. Hasler, Nov 02 2012
STATUS
approved