login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216480 Primitive non-solvable numbers: orders of non-solvable groups such that all groups with order a proper divisor of that order are solvable. 1
60, 168, 504, 1092, 2448, 5616, 6072, 9828, 25308, 28224, 32736, 39732, 51888, 74412, 150348, 194472, 285852, 456288, 546312, 612468, 721392, 1024128, 1285608, 1934868, 2097024, 2165292, 2328648, 2588772, 3594432, 3822588, 5544672, 5848428, 6324552, 7174332, 8487168, 9095592 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primitive elements of A056866; consequently, each term is divisible by 4 and either 3 or 5.

That is, numbers n such that n is in A056866, but no smaller m dividing n is in A056866. - Charles R Greathouse IV, May 09 2018

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

FORMULA

a(n) ~ kn^3 log^3 n, where k = 27/8. - Charles R Greathouse IV, Sep 11 2012

PROG

(PARI) list(lim)={

    my(v=List([5616]), t);

    forprime(p=2, log(lim)\log(8)+2,

        listput(v, (4^p-1)<<p)

    );

    forprime(p=3, log(2*lim)\log(27)+2,

        listput(v, 3^p*(9^p\2))

    );

    forprime(p=3, log(lim)\log(32)+2,

        listput(v, (4^p-1)*(2^p-1)<<(2*p))

    );

    forprime(p=7, sqrtn(2*lim, 3)+1,

        if(p%5>1 && p%5<4, listput(v, p^2\2*p))

    );

    vecsort(select(n->n<=lim, Vec(v)))

};

CROSSREFS

Cf. A056866.

Sequence in context: A109379 A001034 A119630 * A257146 A291549 A259946

Adjacent sequences:  A216477 A216478 A216479 * A216481 A216482 A216483

KEYWORD

nonn,nice

AUTHOR

Charles R Greathouse IV, Sep 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 22:57 EDT 2018. Contains 315425 sequences. (Running on oeis4.)