login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056866 Orders of non-solvable groups, i.e. numbers which are not solvable numbers. 14
60, 120, 168, 180, 240, 300, 336, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 900, 960, 1008, 1020, 1080, 1092, 1140, 1176, 1200, 1260, 1320, 1344, 1380, 1440, 1500, 1512, 1560, 1620, 1680, 1740, 1800, 1848, 1860, 1920, 1980, 2016, 2040 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A number is solvable if every group of that order is solvable.

This comment is about the 4 sequences A001034, A060793, A056866, A056868: The Feit Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001

Insoluble group orders can be derived from A001034 (simple non-cyclic orders): n is an insoluble order iff n is a multiple of a simple non-cyclic order - Des MacHale.

All terms are divisible by 4 and either 3 or 5. - Charles R Greathouse IV, Sep 11 2012

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2240 terms from Noe)

J. Pakianathan and K. Shankar, Nilpotent Numbers, Amer. Math. Monthly, 107, August-September 2000, 631-634.

R. Brauer, Investigation On Groups Of Even Order, I

R. Brauer, Investigation On Groups Of Even Order, II

W. Feit and J. G. Thompson, A Solvability Criterion For Finite Groups And Consequences, Proc. N. A. S. 48 (6) (1962) 968

FORMULA

A positive integer n is a non-solvable number if and only if it is a multiple of any of the following numbers: a) 2^p(2^2p-1), p any prime. b) 3^p(3^2p-1)/2, p odd prime. c) p(p^2-1)/2, p prime greater than 3 such that p^2+1 = 0 (mod 5). d) 2^4*3^3*13. e) 2^2p(2^2p+1)(2^p-1), p odd prime.

MATHEMATICA

ma[n_] := For[k = 1, True, k++, p = Prime[k]; m = 2^p*(2^(2*p) - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mb[n_] := For[k = 2, True, k++, p = Prime[k]; m = 3^p*((3^(2*p) - 1)/2); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mc[n_] := For[k = 3, True, k++, p = Prime[k]; m = p*((p^2 - 1)/2); If[Mod[p^2 + 1, 5] == 0, If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]]; md[n_] := Mod[n, 2^4*3^3*13] == 0; me[n_] := For[k = 2, True, k++, p = Prime[k]; m = 2^(2*p)*(2^(2*p) + 1)*(2^p - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; notSolvableQ[n_] := OddQ[n] || ma[n] || mb[n] || mc[n] || md[n] || me[n]; Select[ Range[3000], notSolvableQ] (* Jean-Fran├žois Alcover, Jun 14 2012, from formula *)

PROG

(PARI) is(n)={

    if(n%5616==0, return(1));

    forprime(p=2, valuation(n, 2),

        if(n%(4^p-1)==0, return(1))

    );

    forprime(p=3, valuation(n, 3),

        if(n%(9^p\2)==0, return(1))

    );

    forprime(p=3, valuation(n, 2)\2,

        if(n%((4^p+1)*(2^p-1))==0, return(1))

    );

    my(f=factor(n)[, 1]);

    for(i=1, #f,

        if(f[i]>3 && f[i]%5>1 && f[i]%5<4 && n%(f[i]^2\2)==0, return(1))

    );

    0

}; \\ Charles R Greathouse IV, Sep 11 2012

CROSSREFS

Cf. A003277, A051532, A056867, A056868, A001034.

Sequence in context: A182683 A174601 A096490 * A098136 A060793 A169823

Adjacent sequences:  A056863 A056864 A056865 * A056867 A056868 A056869

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Sep 02 2000

EXTENSIONS

More terms from Des MacHale, Feb 19 2001

Further terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 04:27 EST 2014. Contains 252079 sequences.