login
A296767
Numbers whose base-60 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
4
60, 120, 121, 180, 181, 182, 240, 241, 242, 243, 300, 301, 302, 303, 304, 360, 361, 362, 363, 364, 365, 420, 421, 422, 423, 424, 425, 426, 480, 481, 482, 483, 484, 485, 486, 487, 540, 541, 542, 543, 544, 545, 546, 547, 548, 600, 601, 602, 603, 604, 605, 606
OFFSET
1,1
COMMENTS
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296762-A296764 partition the natural numbers. See the guide at A296712.
LINKS
EXAMPLE
The base-60 digits of 10921 are 3, 2, 1; here #(rises) = 0 and #(falls) = 2, so 10921 is in the sequence.
MATHEMATICA
z = 200; b = 60; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296765 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296766 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296767 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 08 2018
STATUS
approved