login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216483 a(n) = Sum_{k=0..n} binomial(n,k)^3 * 4^k. 6
1, 5, 49, 605, 8065, 113525, 1656145, 24774125, 377601025, 5839329125, 91349718769, 1442580779645, 22959923825281, 367847984671445, 5926784048373265, 95960317086368525, 1560335109283897345, 25466972987548413125, 417048643127042376625, 6850021673230814868125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Diagonal of rational function 1/(1 + y + z + x*y + y*z + 4*x*z + 5*x*y*z). - Gheorghe Coserea, Jul 01 2018

Diagonal of rational function 1 / ((1-x)*(1-y)*(1-z) - 4*x*y*z). - Seiichi Manyama, Jul 11 2020

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

V. Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012.

FORMULA

Recurrence: (n+3)^2*(3*n+4)*a(n+3) = 5*(9*n^3+57*n^2+116*n+74)*a(n+2) + (99*n^3+528*n^2+938*n+555)*a(n+1) + 125*(3*n+7)*(n+1)^2*a(n).

a(n) ~ (1+2^(2/3))^2/(2*2^(2/3)*sqrt(3)*Pi) * (3*4^(2/3)+3*4^(1/3)+5)^n/n. - Vaclav Kotesovec, Sep 19 2012

G.f.: hypergeom([1/3, 2/3],[1],108*x^2/(1-5*x)^3)/(1-5*x). - Mark van Hoeij, May 02 2013

a(n) = hypergeom([-n,-n,-n],[1,1],-4). - Peter Luschny, Sep 23 2014

G.f. y=A(x) satisfies: 0 = x*(5*x + 2)*(125*x^3 + 33*x^2 + 15*x - 1)*y'' + (1875*x^4 + 1330*x^3 + 273*x^2 + 60*x - 2)*y' + (625*x^3 + 495*x^2 + 42*x + 10)*y. - Gheorghe Coserea, Jul 01 2018

MATHEMATICA

Table[Sum[Binomial[n, k]^3*4^k, {k, 0, n}], {n, 0, 20}]

PROG

(Sage)

A216483 = lambda n: hypergeometric([-n, -n, -n], [1, 1], -4)

[Integer(A216483(n).n(100)) for n in (0..19)] # Peter Luschny, Sep 23 2014

(PARI) a(n) = sum(k=0, n, binomial(n, k)^3 * 4^k); \\ Gheorghe Coserea, Jul 01 2018

CROSSREFS

Cf. A206178, A206180, A216636.

Sequence in context: A081474 A274671 A112241 * A243945 A297513 A228511

Adjacent sequences:  A216480 A216481 A216482 * A216484 A216485 A216486

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Sep 11 2012

EXTENSIONS

Minor edits by Vaclav Kotesovec, Mar 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 12:28 EDT 2020. Contains 338027 sequences. (Running on oeis4.)