login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214731 a(n) = n^3 - 2*n^2 - 1. 2
-2, -1, 8, 31, 74, 143, 244, 383, 566, 799, 1088, 1439, 1858, 2351, 2924, 3583, 4334, 5183, 6136, 7199, 8378, 9679, 11108, 12671, 14374, 16223, 18224, 20383, 22706, 25199, 27868, 30719, 33758, 36991, 40424, 44063, 47914, 51983, 56276, 60799, 65558, 70559 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

From Bruno Berselli, Jul 27 2012: (Start)

G.f.: -x*(2-7*x-x^3)/(1-x)^4.

a(n) = A085490(n-1)+2.

a(n) = A152619(n-2)-1 for n>1.

a(n)-a(n-2) = A080859(n-2)-1 for n>2. (End)

MAPLE

A214731:=n->n^3-2*n^2-1: seq(A214731(n), n=1..60); # Wesley Ivan Hurt, Apr 18 2017

MATHEMATICA

Table[n^3 - 2 n^2 - 1, {n, 50}] (* Vincenzo Librandi, Jul 29 2012 *)

PROG

(PARI) a(n)=n^3-2*n^2-1 \\ Charles R Greathouse IV, Jul 27 2012

(MAGMA) [n^3-2*n^2-1: n in [1..50]]; // Vincenzo Librandi, Jul 29 2012

CROSSREFS

Cf. A144390 (first differences).

Similar sequences: A152015 (of the type m^3+2m^2-1), A081437 (m^3-2m^2+1).

Sequence in context: A012965 A013119 A012962 * A079899 A239444 A224090

Adjacent sequences:  A214728 A214729 A214730 * A214732 A214733 A214734

KEYWORD

sign,easy

AUTHOR

Marco Piazzalunga, Jul 27 2012

EXTENSIONS

a(3) corrected by Charles R Greathouse IV, Jul 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 01:17 EDT 2018. Contains 315360 sequences. (Running on oeis4.)