This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213479 Number of (w,x,y) with all terms in {0,...,n} and |w-x|+|x-y| = w+x+y. 3
 1, 4, 11, 18, 30, 41, 58, 73, 95, 114, 141, 164, 196, 223, 260, 291, 333, 368, 415, 454, 506, 549, 606, 653, 715, 766, 833, 888, 960, 1019, 1096, 1159, 1241, 1308, 1395, 1466, 1558, 1633, 1730, 1809, 1911, 1994, 2101, 2188, 2300, 2391, 2508, 2603, 2725, 2824 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) + A213480(n) = (n+1)^3. For a guide to related sequences, see A212959. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). G.f.: (1 + 3*x + 5*x^2 + x^3 - x^4)/((1 - x)^3 * (1 + x)^2). From Colin Barker, Jan 27 2016: (Start) a(n) = (18*n^2+2*(-1)^n*n+42*n+5*(-1)^n+11)/16. a(n) = (9*n^2+22*n+8)/8 for n even. a(n) = (9*n^2+20*n+3)/8 for n odd. (End) MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w + x + y == Abs[w - x] + Abs[x - y], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; Map[t[#] &, Range[0, 60]]   (* A213479 *) PROG (PARI) Vec((1+3*x+5*x^2+x^3-x^4)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 27 2016 CROSSREFS Cf. A212959. Sequence in context: A009873 A300744 A300743 * A301091 A008054 A009869 Adjacent sequences:  A213476 A213477 A213478 * A213480 A213481 A213482 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jun 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 21:05 EDT 2019. Contains 323503 sequences. (Running on oeis4.)