login
A213477
Main diagonal starting k=2 of array A(k,n) = numbers n such that n^k - prime(n) is a prime.
0
6, 10, 40, 14, 62, 76, 174, 278, 218, 702, 762, 758, 950, 858, 1782, 2290, 1596, 1462, 1848, 2964, 2262, 4278, 3750, 4320, 5076, 4010, 4890, 8040, 7494, 5962, 7996, 10318, 9424, 5770, 10080, 11088, 12222, 13806, 14712, 16904, 15222, 15620, 18258, 16092
OFFSET
1,1
REFERENCES
The k=2 row is A064712 Numbers n such that n^2 - prime(n) is prime.
The k=3 row is A212881 Numbers n such that n^3 - prime(n) is prime.
The k=4 row is A212883 Numbers n such that n^4 - prime(n) is prime.
The k=8 row is A213428 Numbers n such that n^8 - prime(n) is prime.
EXAMPLE
The array begins:
=====================================================
....|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|
=====================================================
k=2.|...6.|..10.|..12.|..18.|..24.|..28.|..30.|..40.|A064712
k=3.|...2.|..10.|..38.|..42.|..44.|..50.|..66.|..74.|A212881
k=4.|...2.|...6.|..40.|..76.|.144.|.146.|.148.|.166.|A212883
=====================================================
MATHEMATICA
Table[Select[Range[100000], PrimeQ[#^n - Prime[#]] &, n-1][[n-1]], {n, 2, 50}] (* T. D. Noe, Jun 13 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Jun 12 2012
STATUS
approved