login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212846
Polylogarithm li(-n,-1/2) multiplied by (3^(n+1))/2.
41
1, -1, -1, 3, 15, -21, -441, -477, 19935, 101979, -1150281, -14838957, 60479055, 2328851979, 3529587879, -403992301437, -3333935426625, 72778393505979, 1413503392326039, -10851976875907917, -554279405351601105, -713848745428080021
OFFSET
0,4
COMMENTS
Apart from sign, same as A087674: a(n) = A087674*(-1)^n
Given integers n, p, q, 0<p<q, the value of li(-n,-p/q)=sum(k>=0, ((k^n)/(-p/q)^k) ) = s(n), multiplied by ((p+q)^(n+1))/q is an integer a(n). For this sequence set p=1 and q=2.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..455 (terms 0..100 from Stanislav Sykora)
S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), Stan's Library Vol. I, April 2006, updated March 2012. See Eq.(29).
Eric W. Weisstein, MathWorld: Polylogarithm
FORMULA
General recurrence: s(n+1)=(-p/(p+q))*SUM(C(n+1,i)*s(i)), where i=0,1,2,...,n, C(n,m) are binomial coefficients, and the starting value is s(0)=SUM((-p/q)^k)=q/(p+q). For this sequence set p=1 and q=2.
From Peter Bala, Jun 24 2012: (Start)
E.g.f.: A(x) = 3/(2+exp(3*x)).
The compositional inverse (A(-x) - 1)^(-1) = x + x^2/2 + 3*x^3/3 + 5*x^4/4 + 11*x^5/5 + ... is the logarithmic generating function for A001045.
(End)
a(n+1) = -3*a(n) + 2*sum(k=0..n, binomial(n,k)*a(k)*a(n-k) ), with a(0) = 1. - Peter Bala, Mar 12 2013
Let A(x) be the g.f. of A212846, B(x) the g.f. of A087674, then A(x) = B(-x).
G.f.: 1/Q(0), where Q(k)= 1 + x*(k+1)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
O.g.f.: Sum_{n>=0} n!*(-x)^n / Product_{k=0..n} (1-3*k*x). - Paul D. Hanna, May 30 2013
For n>0, a(n) = -A179929(n)/2. - Stanislav Sykora, May 15 2014
a(n) = Sum_{k=0..n} k! * (-1)^k * 3^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022
a(n) ~ n! * (log(2) * cos(n*arctan(Pi/log(2))) - Pi * sin(n*arctan(Pi/log(2)))) * 3^(n+1) / (Pi^2 + log(2)^2)^(1 + n/2). - Vaclav Kotesovec, May 17 2022
EXAMPLE
a(5) = polylog(-5,-1/2)*3^6/2 = -21.
E.g.f.: A(x) = 1 - x - x^2/2! + 3*x^3/3! + 15*x^4/4! - 21*x^5/5! + ...
O.g.f.: G(x) = 1 - x - x^2 + 3*x^3 + 15*x^4 - 21*x^5 - 441*x^6 +...
where G(x) = 1 - x/(1-3*x) + 2!*x^2/((1-3*x)*(1-6*x)) - 3!*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4!*x^4/((1-3*x)*(1-6*x)*(1-9*x)*(1-12*x)) +...
MAPLE
seq(add((-1)^(n-k)*combinat[eulerian1](n, k)*2^k, k=0..n), n=0..21); # Peter Luschny, Apr 21 2013
MATHEMATICA
f[n_] := PolyLog[-n, -1/2] 3^(n + 1)/2; Array[f, 21] (* Robert G. Wilson v, May 28 2012 *)
a[ n_] := If[ n < 0, 0, n! 3/2 SeriesCoefficient[ 1 / (1 + Exp[3 x] / 2), {x, 0, n}]]; (* Michael Somos, Aug 27 2018 *)
PROG
(PARI) /* for this sequence, run limnpq(nmax, 1, 2) */
limnpq(nmax, p, q) = {
f=vector(nmax+1); f[1]=q/(p+q); r=-p/(p+q);
for (i=2, nmax+1, p1=i-1; bc=1; m=p1; s=0;
for(j=1, i-1, p2=j-1; if (p2, bc=bc*m/p2; m=m-1; );
s=s+bc*f[j]; ); f[i]=r*s; );
fac=(p+q)/q;
for(i=1, nmax+1, f[i]=f[i]*fac; fac=(p+q)*fac;
write("outputfile", i-1, " ", f[i]); ); }
(PARI) x='x+O('x^66); Vec(serlaplace(3/(2+exp(3*x)))) \\ Joerg Arndt, Apr 21 2013
(PARI) /* O.g.f.: */
{a(n)=polcoeff(sum(m=0, n, m!*(-x)^m/prod(k=1, m, 1-3*k*x+x*O(x^n))), n)} \\ Paul D. Hanna, May 30 2013
(PARI) a(n) = sum(k=0, n, k!*(-1)^k*3^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
CROSSREFS
Similar cases: A210246 (p=1,q=3), A212847 (p=2,q=3)
Cf. A210244 (similar).
Cf. A213127 through A213157.
Sequence in context: A277585 A318134 A087674 * A276804 A009057 A289712
KEYWORD
sign
AUTHOR
Stanislav Sykora, May 28 2012
STATUS
approved