login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210244 Numerators of the polylogarithm li(-n,-1/2)/2. 3
-1, -1, 1, 5, -7, -49, -53, 2215, 1259, -14201, -183197, 248885, 9583753, 14525053, -554173253, -4573299625, 99833187251, 215440236599, -1654012631597, -84480933600305, -36267273557287, 10992430255511053, 117548575473066241, -1380910044674479865 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Given an integer n>0, consider the infinite series s(n) = li(-n,-1/2)) = SUM((-1)^k)(k^n)/2^k) for k=1,2,... Then s(n)=2*a(n)/A131137(n+1).

LINKS

Table of n, a(n) for n=1..24.

S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), Stan's Library Vol.I, April 2006, updated March 2012. See Eq.(29).

Eric W. Weisstein, MathWorld: Polylogarithm

FORMULA

Recurrence: s(n+1)=(-1/3)*SUM(C(n+1,i)*s(i)), where i=0,1,2,...,n, and C(n,m) are the binomial coefficients, with the starting value of s(0)=2/3.

EXAMPLE

s(1)=-2/9, s(2)=-2/27, s(3)=+2/27, s(4)=+10/81.

MATHEMATICA

nn = 30; s[0] = 1; Do[s[n+1] = (-1/3) Sum[Binomial[n+1, i] s[i], {i, 0, n}], {n, 0, nn}]; Numerator[Table[s[n], {n, 0, nn}]] (* T. D. Noe, Mar 20 2012 *)

Table[PolyLog[-n, -1/2]/2, {n, 30}] (* T. D. Noe, Mar 23 2012 *)

PROG

(PARI) a(n)=numerator(polylog(-n, -1/2)/2) \\ Charles R Greathouse IV, Jul 15 2014

CROSSREFS

Denominators: A131137, offset by 1.

Cf. A212846.

Sequence in context: A106114 A217039 A110420 * A123789 A180552 A168545

Adjacent sequences:  A210241 A210242 A210243 * A210245 A210246 A210247

KEYWORD

sign,frac

AUTHOR

Stanislav Sykora, Mar 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 20:12 EDT 2017. Contains 287241 sequences.