OFFSET
0,4
COMMENTS
For a guide to related sequences, see A211795.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
FORMULA
a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
From Colin Barker, Dec 05 2015: (Start)
a(n) = 1/96*(14*n^4-12*n^3-8*n^2-6*((-1)^n-1)*n+3*((-1)^n-1)).
G.f.: x^2*(1+5*x+5*x^2+3*x^3) / ((1-x)^5*(1+x)^2).
(End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x >= 2 y + 2 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212565 *)
PROG
(PARI) concat([0, 0], Vec(x^2*(1+5*x+5*x^2+3*x^3)/((1-x)^5*(1+x)^2) + O(x^100))) \\ Colin Barker, Dec 05 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 21 2012
STATUS
approved