login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105636 Transform of n^3 by the Riordan array (1/(1-x^2), x). 13
0, 1, 8, 28, 72, 153, 288, 496, 800, 1225, 1800, 2556, 3528, 4753, 6272, 8128, 10368, 13041, 16200, 19900, 24200, 29161, 34848, 41328, 48672, 56953, 66248, 76636, 88200, 101025, 115200, 130816, 147968, 166753, 187272, 209628, 233928, 260281, 288800, 319600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Recurrence a(n) = a(n-2) + n^3, starting with a(0)=0, a(1)=1. Also, in physics, a(n)/4 is the trace of the spin operator |S_z|^3 for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of the absolute values of their 3rd powers is 2*28/8 = a(3)/4. - Stanislav Sykora, Nov 07 2013

Also the number of 3-cycles in the (n+1)-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017

With zero prepended and offset 1, the sequence starts 0,0,1,8,28,... for n=1,2,3,... Call this b(n). Consider the partitions of n into two parts (p,q). Then b(n) is the total volume of the family of cubes with side length |q - p|. - Wesley Ivan Hurt, Apr 14 2018

LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..9999

Eric Weisstein's World of Mathematics, Graph Cycle

Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).

FORMULA

G.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^5).

a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).

a(n) = (2*n^4 + 8*n^3 + 8*n^2 - 1 + (-1)^n)/16.

a(n) = Sum_{k=0..floor((n-1)/2)} (n-2*k)^3.

a(n+1) = Sum_{k=0..n} k^3*(1 - (-1)^(n+k-1))/2.

a(n) = ((((x^2 - (x mod 2) - 4)/4)^2 - (((x^2 - (x mod 2) - 4)/4) mod 2))/8) = floor(((floor(x^2/4) - 1)^2)/8) where x = 2*n + 2. Replace x with 2*n - 1 to obtain A050534(n) = 3*A000332(n+1). Note that a(2*n) = A060300(n)/2 and a(2*n + 1) = A002593(n+1). - Raphie Frank, Jan 30 2014

a(n) = floor(1/(exp(2/n^2) - 1)^2)/2. Also a(n) = A007590(n+1)*A074148(n-1)/2. - Richard R. Forberg, Oct 26 2014

MATHEMATICA

LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 8, 28, 72, 153}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)

CoefficientList[Series[x (1 + 4 x + x^2)/((1 + x) (1 - x)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2012 *)

Table[((-1)^n + 2 n^2 (n + 2)^2 - 1)/16, {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)

PROG

(MAGMA) [(2*n^4+8*n^3+8*n^2-1)/16+(-1)^n/16: n in [0..50]]; // Vincenzo Librandi, Oct 27 2014

(PARI) x='x+O('x^99); concat(0, Vec(x*(1+4*x+x^2)/((1+x)*(1-x)^5))) \\ Altug Alkan, Apr 16 2018

(Sage) [(2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16 for n in range(30)] # G. C. Greubel, Dec 16 2018

(GAP) List([0..30], n -> (2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16); # G. C. Greubel, Dec 16 2018

CROSSREFS

Cf. A002620, A000292, A000578, A011934, A231303.

Cf. A289705 (4-cycles), A289706 (5-cycles), A289707 (6-cycles).

Sequence in context: A119515 A304343 A153976 * A102665 A212565 A209408

Adjacent sequences:  A105633 A105634 A105635 * A105637 A105638 A105639

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Apr 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 03:55 EST 2019. Contains 319184 sequences. (Running on oeis4.)