|
|
A153976
|
|
a(n) = n^3 + (n+2)^3.
|
|
5
|
|
|
8, 28, 72, 152, 280, 468, 728, 1072, 1512, 2060, 2728, 3528, 4472, 5572, 6840, 8288, 9928, 11772, 13832, 16120, 18648, 21428, 24472, 27792, 31400, 35308, 39528, 44072, 48952, 54180, 59768, 65728, 72072, 78812, 85960, 93528, 101528, 109972, 118872
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..765
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
|
|
FORMULA
|
For n>3, a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). [Harvey P. Dale, Aug 02 2011]
G.f.: 4*( 2-x+2*x^2 ) / (x-1)^4 . - R. J. Mathar, Apr 11 2016
a(n) = 4*A229183(n+1). - R. J. Mathar, Apr 11 2016
|
|
MATHEMATICA
|
f[n_]:=n^3; lst={}; Do[AppendTo[lst, (f[n]+f[n+2])], {n, 0, 6!}]; lst
Array[#^3+(#+2)^3&, 40, 0] (* or *) LinearRecurrence[{4, -6, 4, -1}, {8, 28, 72, 152}, 40] (* Harvey P. Dale, Aug 02 2011 *)
|
|
PROG
|
(MAGMA) [n^3+(n+2)^3: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
|
|
CROSSREFS
|
Cf. A000537, A000578, A003215, A005898, A006007, A027602.
Sequence in context: A328535 A119515 A304343 * A105636 A102665 A212565
Adjacent sequences: A153973 A153974 A153975 * A153977 A153978 A153979
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Jan 03 2009
|
|
EXTENSIONS
|
Offset changed from 1 to 0 by Vincenzo Librandi, Apr 26 2011
|
|
STATUS
|
approved
|
|
|
|