login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212514
Number of (w,x,y,z) with all terms in {1,...,n} and w<=2x and y>3z.
2
0, 0, 0, 0, 14, 42, 90, 200, 364, 585, 960, 1440, 2052, 2926, 4004, 5280, 7000, 9000, 11340, 14280, 17670, 21483, 26180, 31416, 37296, 44252, 52000, 60480, 70434, 81270, 93150, 106720, 121520, 137445, 155584, 175032, 196020, 219450, 244644, 271440, 301340
OFFSET
0,5
COMMENTS
For a guide to related sequences, see A211795.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1).
FORMULA
a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)+2*a(n-7)-2*a(n-9)+4*a(n-11)+a(n-12)-2*a(n-13)-2*a(n-14)+a(n-16).
G.f.: x^4*(14 +42*x +62*x^2 +88*x^3 +114*x^4 +103*x^5 +90*x^6 +74*x^7 +42*x^8 +15*x^9 +4*x^10) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3). - Colin Barker, Dec 18 2015
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w <= 2 x && y > 3 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212514 *)
LinearRecurrence[{0, 2, 2, -1, -4, 0, 2, 0, -2, 0, 4, 1, -2, -2, 0, 1}, {0, 0, 0, 0, 14, 42, 90, 200, 364, 585, 960, 1440, 2052, 2926, 4004, 5280}, 50] (* Harvey P. Dale, Dec 24 2020 *)
PROG
(PARI) concat(vector(4), Vec(x^4*(14 +42*x +62*x^2 +88*x^3 +114*x^4 +103*x^5 +90*x^6 +74*x^7 +42*x^8 +15*x^9 +4*x^10) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3) + O(x^60))) \\ Colin Barker, Dec 18 2015
CROSSREFS
Sequence in context: A163756 A005587 A244101 * A292051 A242897 A120714
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 20 2012
STATUS
approved