This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212517 Number of (w,x,y,z) with all terms in {1,...,n} and w>2x and y<=3z. 2
 0, 0, 0, 9, 30, 92, 198, 396, 684, 1152, 1760, 2650, 3780, 5292, 7140, 9555, 12376, 15936, 20088, 25110, 30870, 37800, 45540, 54692, 64944, 76752, 89856, 104949, 121394, 140140, 160650, 183600, 208560, 236544, 266560, 299982, 335988, 375516, 417924, 464607 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS For a guide to related sequences, see A211795. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1). FORMULA a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)+2*a(n-7)-2*a(n-9)+4*a(n-11)+ a(n-12)-2*a(n-13)-2*a(n-14)+a(n-16). G.f.: x^3*(9 +30*x +74*x^2 +120*x^3 +161*x^4 +170*x^5 +176*x^6 +148*x^7 +106*x^8 +58*x^9 +24*x^10 +4*x^11) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3). - Colin Barker, Dec 11 2015 MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w > 2 x && y <= 3 z, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 50]]   (* A212517 *) FindLinearRecurrence[%] LinearRecurrence[{0, 2, 2, -1, -4, 0, 2, 0, -2, 0, 4, 1, -2, -2, 0, 1}, {0, 0, 0, 9, 30, 92, 198, 396, 684, 1152, 1760, 2650, 3780, 5292, 7140, 9555}, 37] (* Ray Chandler, Aug 02 2015 *) PROG (PARI) concat(vector(3), Vec(x^3*(9 +30*x +74*x^2 +120*x^3 +161*x^4 +170*x^5 +176*x^6 +148*x^7 +106*x^8 +58*x^9 +24*x^10 +4*x^11) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3) + O(x^100))) \\ Colin Barker, Dec 11 2015 CROSSREFS Cf. A211795, A212508. Sequence in context: A002414 A273604 A273640 * A274998 A000440 A161684 Adjacent sequences:  A212514 A212515 A212516 * A212518 A212519 A212520 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:25 EST 2016. Contains 278781 sequences.