OFFSET
0,4
COMMENTS
For a guide to related sequences, see A211795.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1).
FORMULA
a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)+2*a(n-7)-2*a(n-9)+4*a(n-11)+a(n-12)-2*a(n-13)-2*a(n-14)+a(n-16).
G.f.: x^3*(7 +24*x +43*x^2 +73*x^3 +104*x^4 +100*x^5 +97*x^6 +92*x^7 +61*x^8 +30*x^9 +14*x^10 +3*x^11) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3). - Colin Barker, Dec 18 2015
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < 2 x && y >= 3 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212511 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(7 +24*x +43*x^2 +73*x^3 +104*x^4 +100*x^5 +97*x^6 +92*x^7 +61*x^8 +30*x^9 +14*x^10 +3*x^11) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3) + O(x^60))) \\ Colin Barker, Dec 18 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 20 2012
STATUS
approved